Công thức Toán 9 quan trọng (mới)
Trọn bộ công thức Toán 9 chương trình mới Kết nối tri thức, Chân trời sáng tạo, Cánh diều đầy đủ Học kì 1, Học kì 2 Đại số và Hình học bao gồm các công thức quan trọng, lý thuyết và bài tập tự luyện giúp học sinh lớp 9 vận dụng để biết cách làm bài tập Toán 9.
Chủ đề: Phương trình và bất phương trình bậc nhất
Chủ đề: Căn bậc hai - Căn bậc ba
Chủ đề: Hàm số y = ax2 (a ≠ 0). Phương trình bậc hai một ẩn
Công thức nghiệm và công thức nghiệm thu gọn của phương trình bậc hai một ẩn
Công thức viết phương trình bậc hai một ẩn khi biết tổng và tích hai nghiệm của chúng
Chủ đề: Hệ thức lượng trong tam giác vuông
Công thức xét tính đồng biến, nghịch biến của hàm số hay, chi tiết
Công thức về vị trí tương đối của hai đường thẳng đầy đủ, chi tiết
Công thức tìm tọa độ giao điểm của hai đường thẳng hay, chi tiết
Công thức liên hệ giữa đường nối tâm và tâm của hai đường tròn
Công thức liên hệ giữa dây và khoảng cách từ tâm đến dây hay, chi tiết
Vị trí tương đối của đường thẳng và đường tròn đầy đủ, chi tiết
Công thức tính bán kính đường tròn ngoại tiếp tam giác vuông
Công thức tính bán kính đường tròn ngoại tiếp và bán kính đường tròn nội tiếp của tam giác đều
Công thức tính bán kính đường tròn ngoại tiếp của hình chữ nhật và hình vuông
Công thức tìm góc quay của phép quay giữ nguyên hình đa giác đều
Công thức tính diện tích xung quanh và thể tích của hình trụ
Công thức tính diện tích xung quanh và thể tích của hình nón
Công thức căn bậc hai
I. Lý thuyết
+ Căn bậc hai của một số thực a không âm là x sao cho x2 = a
+ Mỗi số dương a có hai căn bậc hai là √a và -√a ;
+ Số 0 có một căn bậc hai là 0
+ Số âm không có căn bậc hai.
Chú ý: Căn bậc hai số học của một số a không âm là √a
II. Các công thức:
1. Điều kiện để căn thức, biểu thức có nghĩa
+ có nghĩa khi A ( x ) ≥ 0
+ có nghĩa khi B ( x ) ≠ 0
+ có nghĩa khi
+ có nghĩa khi B ( x ) > 0
+ có nghĩa khi
2. So sánh căn bậc hai
a > b ≥ 0 => √a > √b
III. Các ví dụ
Ví dụ 1:Tìm căn bậc hai của các số sau đây:
a) 25
b)
Lời giải:
a) Căn bậc hai của 25 là 5 và -5 vì 52 = 25 và (-5)2 = 25
b) Căn bậc hai của
Ví dụ 2: Tìm điều kiện của x để căn sau có nghĩa:
Lời giải:
a) có nghĩa
⇔ 3x + 1 ≥ 0
⇔ 3x ≥ -1
⇔ x ≥ -1 : 3
⇔ x ≥
Vậy có nghĩa khi x ≥
b) Ta có để có nghĩa
⇔
Vì –5 < 0 nên để
thì 2x - 1 < 0 (do mẫu số phải khác 0 nên 2x - 1 ≠ 0 )
2x - 1 < 0
⇔ 2x < 1
⇔ x <
Vậy x < thì căn có nghĩa
c) Để có nghĩa thì
. Ta có hai trường hợp:
Trường hợp 1:
Trường hợp 2:
Vậy để có nghĩa thì 1 ≤ x < 2
Ví dụ 3: So sánh các căn bậc hai sau:
a) 5 và 2√5
b) 4 và √17 + 1
Lời giải:
a) Ta có: 52 = 25 và (2√5)2 = 22.5 = 4.5 = 20
Vì 25 > 20 nên √25 > √20
=> 5 > 2√5
b) Ta có: 4 = 3 + 1 vậy để so sánh 4 và √17 + 1 ta đi so sánh 3 và √17
32 = 9. Vì 17 > 9 nên √17 > √9 => √17 > 3 => √17 + 1 > 3 + 1 => √17 + 1 > 4
IV. Bài tập tự luyện
Bài 1: Tìm căn bậc hai, căn bậc hai số học của các số sau đây
4; 1,69; ; 64
Bài 2: Tìm điều kiện để căn có nghĩa:
Bài 3: So sánh các số sau:
a) √51 và 7
b) 3√23 và 2√31
c) √11 + 1 và 4
....................................
....................................
....................................
Công thức Hệ thức lượng trong tam giác vuông
I. Lý thuyết
Cho tam giác ABC vuông tại A đường cao AH
Ta kí hiệu:
AB = c; BC = a; AC = b; AH = h; BH = c’; CH = b’
Khi đó ta có các hệ thức sau:
+ AB2 = BH.BC hay c2 = a.c'
+ AC2 = CH.BC hay b2 = a.b'
+ AH2 = BH.CH hay h2 = b'.c'
+ AB.AC = AH.BC hay b.c = a.h
+
+ AB2 + AC2 = BC2 hay c2 + b2 = c2 (định lý Py – ta – go)
II. Bài tập
Bài 1: Tìm x, y trong hình vẽ:
Lời giải:
Áp dụng định lý Py – ta – go cho tam giác vuông ABC ta có:
AB2 + AC2 = BC2
⇔ 62 + 82 = BC2
⇔ BC2 = 1002
⇔ BC = 10
Với AH là đường cao, áp dụng hệ thức lượng cho tam giác vuông ABC ta có:
AB2 = BH.BC
⇔ 62 = BH.10
⇔ 36 = BH.10
⇔ BH = 36 : 10
⇔ BH = 3,6
Tương tự ta có:
AC2 = CH.BC
⇔ 82 = CH.10
⇔ 64 = CH.10
⇔ CH = 64 : 10
⇔ CH = 6,4
Bài 2: Cho tam giác ABC vuông tại A, đường cao AH. Biết AB : AC = 3: 4 và BC=15. Tính BH, CH.
Lời giải:
Ta có: AB : AC = 3 : 4
Áp dụng định lý Py – ta – go cho tam giác ABC vuông tại A ta có:
AB2 + AC2 = BC2
Thay BC = 15; ta có:
+ AC2 = 152
⇔ AC2 + AC2 = 225
⇔ AC2 = 225
⇔ AC2 = 225
⇔ AC2 = 225 :
⇔ AC2 = 144
⇔ AC = 12
Áp dụng hệ thức lượng cho tam giác ABC vuông tại A đường cao AH ta có:
AB2 = BH.BC
⇔ 122= CH.15
⇔ CH = 144 : 15
⇔ CH = 9,6
=> BH = BC – CH = 15 – 9,6 = 5,4
Công thức Tỉ số lượng giác của góc nhọn
I. Lý thuyết
1. Định nghĩa
Cho góc nhọn α (0o < α < 90o ). Dựng tam giác ABC vuông tại A sao cho
AB là cạnh đối của góc α
AC là cạnh kề của góc α
BC là cạnh huyền
Khi đó ta có các tỉ số lượng giác sau:
2. Tính chất
+ Với góc nhọn α bất kỳ ta có:
0 < sin α < 1
0 < cos α < 1
tan α.cot α = 1
sin2α + cos2α = 1
+ Nếu α + β = 90o
+ Nếu góc α tăng 0o từ đến 90o thì sin α tăng dần, cos α giảm dần.
3. Bảng tỉ số lượng giác một số góc đặc biệt
4. So sánh hai góc nhọn α,β
+ sin α < sin β ⇔ α < β
+ cos α < cos β ⇔ α > β
+ tan α < tan β ⇔ α < β
+ cot α < cot β ⇔ α > β
5. Công thức tính các cạnh tam giác.
Với AB = c; AC = b; BC = a ta có các công thức:
II. Bài tập
Bài 1: Cho tam giác ABC vuông tại C có BC = 0,9 cm, AC = 1,2 cm. Tính các tỉ số lượng giác của góc B. Từ đó suy ra tỉ số lượng giác của góc A
Lời giải:
Áp dụng định lý Py – ta – go cho tam giác vuông ABC ta có:
AC2 + BC2 = AB2
⇔ 1,22 + 0,92 = AB2
⇔ 1,44 + 0,81 = AB2
⇔ 2,25 = AB2
=> AB = 1,5cm
Tỉ số lượng giác góc A là:
..........................
..........................
..........................
Trên đây là tóm lược một số nội dung có trong tổng hợp công thức Toán lớp 9 Học kì 1 và Học kì 2, mời quí bạn đọc vào từng bài để xem đầy đủ, chi tiết!
- Đề thi lớp 1 (các môn học)
- Đề thi lớp 2 (các môn học)
- Đề thi lớp 3 (các môn học)
- Đề thi lớp 4 (các môn học)
- Đề thi lớp 5 (các môn học)
- Đề thi lớp 6 (các môn học)
- Đề thi lớp 7 (các môn học)
- Đề thi lớp 8 (các môn học)
- Đề thi lớp 9 (các môn học)
- Đề thi lớp 10 (các môn học)
- Đề thi lớp 11 (các môn học)
- Đề thi lớp 12 (các môn học)
- Giáo án lớp 1 (các môn học)
- Giáo án lớp 2 (các môn học)
- Giáo án lớp 3 (các môn học)
- Giáo án lớp 4 (các môn học)
- Giáo án lớp 5 (các môn học)
- Giáo án lớp 6 (các môn học)
- Giáo án lớp 7 (các môn học)
- Giáo án lớp 8 (các môn học)
- Giáo án lớp 9 (các môn học)
- Giáo án lớp 10 (các môn học)
- Giáo án lớp 11 (các môn học)
- Giáo án lớp 12 (các môn học)