Công thức Hệ thức lượng trong tam giác vuông lớp 9 đầy đủ
Công thức Hệ thức lượng trong tam giác vuông Toán 9 sẽ giúp học sinh lớp 9 nắm vững công thức, biết cách làm bài tập từ đó có kế hoạch ôn tập hiệu quả để đạt kết quả cao trong các bài thi Toán 9.
Bài viết Công thức Hệ thức lượng trong tam giác vuông gồm 2 phần: Lý thuyết và Bài tập áp dụng có lời giải chi tiết giúp học sinh dễ học, dễ nhớ Công thức Hệ thức lượng trong tam giác vuông Toán 9.
I. Lý thuyết
Cho tam giác ABC vuông tại A đường cao AH
Ta kí hiệu:
AB = c; BC = a; AC = b; AH = h; BH = c’; CH = b’
Khi đó ta có các hệ thức sau:
+ AB2 = BH.BC hay c2 = a.c'
+ AC2 = CH.BC hay b2 = a.b'
+ AH2 = BH.CH hay h2 = b'.c'
+ AB.AC = AH.BC hay b.c = a.h
+
+ AB2 + AC2 = BC2 hay c2 + b2 = a2 (định lý Pythagore)
II. Bài tập
Bài 1: Tìm x, y trong hình vẽ:
Lời giải:
Áp dụng định lý Py – ta – go cho tam giác vuông ABC ta có:
AB2 + AC2 = BC2
⇔ 62 + 82 = BC2
⇔ BC2 = 1002
⇔ BC = 10
Với AH là đường cao, áp dụng hệ thức lượng cho tam giác vuông ABC ta có:
AB2 = BH.BC
⇔ 62 = BH.10
⇔ 36 = BH.10
⇔ BH = 36 : 10
⇔ BH = 3,6
Tương tự ta có:
AC2 = CH.BC
⇔ 82 = CH.10
⇔ 64 = CH.10
⇔ CH = 64 : 10
⇔ CH = 6,4
Bài 2: Cho tam giác ABC vuông tại A, đường cao AH. Biết AB : AC = 3: 4 và BC=15. Tính BH, CH.
Lời giải:
Ta có: AB : AC = 3 : 4
Áp dụng định lý Py – ta – go cho tam giác ABC vuông tại A ta có:
AB2 + AC2 = BC2
Thay BC = 15; ta có:
+ AC2 = 152
⇔ AC2 + AC2 = 225
⇔ AC2 = 225
⇔ AC2 = 225
⇔ AC2 = 225 :
⇔ AC2 = 144
⇔ AC = 12
Áp dụng hệ thức lượng cho tam giác ABC vuông tại A đường cao AH ta có:
AB2 = BH.BC
⇔ 122= CH.15
⇔ CH = 144 : 15
⇔ CH = 9,6
=> BH = BC – CH = 15 – 9,6 = 5,4
Bài 3: Cho tam giác CDE nhọn, đường cao CH. Gọi M, N theo thứ tự là hình chiếu của H lên CD, CE. Chứng minh:
a) CD.CM = CE.CN
b) Tam giác CMN đồng dạng với tam giác CED
Lời giải:
a) Áp dụng hệ thức lượng cho tam giác DCH vuông tại H ta có:
CH2 = CM.CD (1)
Áp dụng hệ thức lượng cho tam giác CEH vuông tại H ta có:
CH2 = CN.CE (2)
Từ (1) và (2)
=> CH2 = CN.CE = CM.CD
=> CN.CE = CM.CD
b) Ta có:
CN.CE = CM.CD
Xét tam giác CMN và tam giác CED ta có:
chung
(chứng minh trên)
=> ΔCMN ∼ ΔCED (c – g – c)
Xem thêm các Công thức Toán lớp 9 quan trọng hay khác:
- Đề thi lớp 1 (các môn học)
- Đề thi lớp 2 (các môn học)
- Đề thi lớp 3 (các môn học)
- Đề thi lớp 4 (các môn học)
- Đề thi lớp 5 (các môn học)
- Đề thi lớp 6 (các môn học)
- Đề thi lớp 7 (các môn học)
- Đề thi lớp 8 (các môn học)
- Đề thi lớp 9 (các môn học)
- Đề thi lớp 10 (các môn học)
- Đề thi lớp 11 (các môn học)
- Đề thi lớp 12 (các môn học)
- Giáo án lớp 1 (các môn học)
- Giáo án lớp 2 (các môn học)
- Giáo án lớp 3 (các môn học)
- Giáo án lớp 4 (các môn học)
- Giáo án lớp 5 (các môn học)
- Giáo án lớp 6 (các môn học)
- Giáo án lớp 7 (các môn học)
- Giáo án lớp 8 (các môn học)
- Giáo án lớp 9 (các môn học)
- Giáo án lớp 10 (các môn học)
- Giáo án lớp 11 (các môn học)
- Giáo án lớp 12 (các môn học)