Các dạng bài tập Hàm số lượng giác, Phương trình lượng giác (chọn lọc, có lời giải)



Tổng hợp các dạng bài tập Hàm số lượng giác, Phương trình lượng giác lớp 11 sách mới Kết nối tri thức, Chân trời sáng tạo, Cánh diều với phương pháp giải chi tiết và bài tập đa dạng giúp học sinh ôn tập, biết cách làm bài tập Hàm số lượng giác, Phương trình lượng giác.

Xem thêm các dạng bài tập Toán 11 sách mới:




Lưu trữ: Các dạng bài tập Hàm số lượng giác, Phương trình lượng giác (sách cũ)

Các dạng bài tập

Cách tìm Tập xác định, tập giá trị của hàm số lượng giác

Các dạng bài tập Toán 11 (có lời giải) Các dạng bài tập Toán 11 (có lời giải)

Đáp án và hướng dẫn giải

1.

Các dạng bài tập Toán 11 (có lời giải)

Vậy tập xác định của hàm số trên là

Các dạng bài tập Toán 11 (có lời giải)

2.

Các dạng bài tập Toán 11 (có lời giải)

Vậy tập xác định của hàm số trên là

Các dạng bài tập Toán 11 (có lời giải)

3.

Các dạng bài tập Toán 11 (có lời giải) Các dạng bài tập Toán 11 (có lời giải)

Vậy tập xác định của hàm số trên là

Các dạng bài tập Toán 11 (có lời giải)

Cách tìm Giá trị lớn nhất, nhỏ nhất của hàm số lượng giác

Để tìm được giá trị lớn nhất;giá trị nhỏ nhất của hàm số ta cần chú ý:

+ Với mọi x ta luôn có: - 1 ≤ cosx ≤ 1; -1 ≤ sinx ≤ 1

+Với mọi x ta có: 0 ≤ |cosx| ≤ 1 ;0 ≤ |sinx| ≤ 1

+ Bất đẳng thức bunhia –copski: Cho hai bộ số (a1; a2) và (b1;b2) khi đó ta có:

(a1.b1+ a2.b2 )2 ≤ ( a12+ a22 ).( b12+ b22 )

Dấu “=” xảy ra khi: a1/a2 = b1/b2

+ Giả sử hàm số y= f(x) có giá trị lớn nhất là M và giá trị nhỏ nhất là m. Khi đó; tập giá trị của hàm số là [m; M].

+ Phương trình : a. sinx+ b. cosx= c có nghiệm khi và chỉ khi a2 + b2 ≥ c2

Ví dụ 1. Tìm giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y= 1- 2|cos3x|.

A. M=3 ; m= - 1.

B. M= 1 ; m= -1.

C. M=2 ;m= -2.

D. M=0 ; m= -2.

Lời giải:.

Chọn B.

Với mọi x ta có : - 1 ≤ cos3x ≤ 1 nên 0 ≤ |cos3x| ≤ 1

⇒ 0 ≥ -2|cos3x| ≥ -2

Cách tìm Giá trị lớn nhất, nhỏ nhất của hàm số lượng giác cực hay

Ví dụ 2: Hàm số y= 1+ 2cos2x đạt giá trị nhỏ nhất tại x= x0. Mệnh đề nào sau đây là đúng?

A.x0=π+k2π, kϵZ .

B.x0=π/2+kπ, kϵZ .

C.x0=k2π, kϵZ .

D.x0=kπ ,kϵZ .

Lời giải:.

Chọn B.

Ta có - 1 ≤ cosx ≤ 1 ⇒ - 0 ≤ cos2x ≤ 1 ⇒ 1 ≤ 1+2cos2x ≤ 3

Do đó giá trị nhỏ nhất của hàm số bằng 1 .

Dấu ‘=’ xảy ra khi cosx=0 ⇒ x=π/2+kπ, kϵZ .

Ví dụ 3: Tìm giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y= sin2x+ 2cos2x.

A.M= 3 ;m= 0

B. M=2 ; m=0.

C. M=2 ; m= 1.

D.M= 3 ; m= 1.

Lời giải:.

Chọn C.

Ta có: y = sin2 x+ 2cos2x = (sin2x+ cos2x) + cos2x = 1+ cos2 x.

Do: -1 ≤ cosx ≤ 1 nên 0 ≤ cos2 x ≤ 1 ⇒ 1 ≤ cos2 x+1 ≤ 2

Suy ra giá trị lớn nhất của hàm số là M= 2 và giá trị nhỏ nhất của hàm số là m= 1

Cách giải phương trình lượng giác cơ bản

- Phương trình sinx = a        (1)

    ♦ |a| > 1: phương trình (1) vô nghiệm.

    ♦ |a| ≤ 1: gọi α là một cung thỏa mãn sinα = a.

Khi đó phương trình (1) có các nghiệm là

                x = α + k2π, k ∈ Z

                và x = π-α + k2π, k ∈ Z.

Nếu α thỏa mãn điều kiện Các dạng bài tập Toán 11 (có lời giải) và sinα = a thì ta viết α = arcsin a.

Khi đó các nghiệm của phương trình (1) là

                x = arcsina + k2π, k ∈ Z

                và x = π - arcsina + k2π, k ∈ Z.

Các trường hợp đặc biệt:

Các dạng bài tập Toán 11 (có lời giải)

- Phương trình cosx = a        (2)

    ♦ |a| > 1: phương trình (2) vô nghiệm.

    ♦ |a| ≤ 1: gọi α là một cung thỏa mãn cosα = a.

Khi đó phương trình (2) có các nghiệm là

                x = α + k2π, k ∈ Z

                và x = -α + k2π, k ∈ Z.

Nếu α thỏa mãn điều kiện Các dạng bài tập Toán 11 (có lời giải) và cosα = a thì ta viết α = arccos a.

Khi đó các nghiệm của phương trình (2) là

                x = arccosa + k2π, k ∈ Z

                và x = -arccosa + k2π, k ∈ Z.

Các trường hợp đặc biệt:

Các dạng bài tập Toán 11 (có lời giải)

- Phương trình tanx = a        (3)

Điều kiện: Các dạng bài tập Toán 11 (có lời giải)

Nếu α thỏa mãn điều kiện Các dạng bài tập Toán 11 (có lời giải) và tanα = a thì ta viết α = arctan a.

Khi đó các nghiệm của phương trình (3) là

                x = arctana + kπ,k ∈ Z

- Phương trình cotx = a        (4)

Điều kiện: x ≠ kπ, k ∈ Z.

Nếu α thỏa mãn điều kiện Các dạng bài tập Toán 11 (có lời giải) và cotα = a thì ta viết α = arccot a.

Khi đó các nghiệm của phương trình (4) là

                x = arccota + kπ, k ∈ Z

Bài 1: Giải các phương trình lượng giác sau:

a) sinx = sin(π/6)        c) tanx – 1 = 0

b) 2cosx = 1.        d) cotx = tan2x.

Bài 2: Giải các phương trình lượng giác sau:

a) cos2 x - sin2x =0.

b) 2sin(2x – 40º) = √3

Bài 3: Giải các phương trình lượng giác sau:

Các dạng bài tập Toán 11 (có lời giải)

Đáp án và hướng dẫn giải

Bài 1: Giải các phương trình lượng giác sau:

a) sin⁡x = sin⁡π/6

Các dạng bài tập Toán 11 (có lời giải)

b)

Các dạng bài tập Toán 11 (có lời giải)

c) tan⁡x=1⇔cos⁡x= π/4+kπ (k ∈ Z)

d) cot⁡x=tan⁡2x

Các dạng bài tập Toán 11 (có lời giải)

Bài 2: Giải các phương trình lượng giác sau:

a) cos2x-sin2x=0 ⇔cos2x-2 sin⁡x cos⁡x=0

        ⇔ cos⁡x (cos⁡x - 2 sin⁡x )=0

Các dạng bài tập Toán 11 (có lời giải)

b) 2 sin⁡(2x-40º )=√3

⇔ sin⁡(2x-40º )=√3/2

Các dạng bài tập Toán 11 (có lời giải)

Bài 3: Giải các phương trình lượng giác sau:

a) sin⁡(2x+1)=cos⁡(3x+2)

Các dạng bài tập Toán 11 (có lời giải)

b)

Các dạng bài tập Toán 11 (có lời giải)

⇔ sin⁡x+1=1+4k

⇔ sin⁡x=4k (k ∈ Z)

Nếu |4k| > 1⇔|k| > 1/4; phương trình vô nghiệm

Nếu |4k| ≤ 1 mà k nguyên ⇒ k = 0 .Khi đó:

        ⇔sin⁡x = 0 ⇔ x = mπ (m ∈ Z)

Xem thêm các dạng bài tập Toán lớp 11 có trong đề thi THPT Quốc gia khác:




Giải bài tập lớp 11 sách mới các môn học