Lý thuyết Một số phương trình lượng giác thường gặp lớp 11 (hay, chi tiết)
Bài viết Lý thuyết Một số phương trình lượng giác thường gặp lớp 11 hay, chi tiết giúp bạn nắm vững kiến thức trọng tâm Lý thuyết Một số phương trình lượng giác thường gặp.
Bài giảng: Bài 3: Một số phương trình lượng giác thường gặp - Thầy Lê Thành Đạt (Giáo viên VietJack)
1. Phương trình bậc nhất với một hàm số lượng giác:
- Định nghĩa: Phương trình bậc nhất đối với một hàm số lượng giác là phương trình có dạng: at + b = 0, trong đó a, b là các hằng số (a ≠ 0) và t là một trong các hàm số lượng giác.
- Ví dụ: 2sin x + 1 = 0 là phương trình bậc nhất đối với sin x,…
2. Phương trình bậc hai đối với một hàm số lượng giác
- Định nghĩa: Phương trình bậc hai đối với một hàm số lượng giác là phương trình có dạng: at2 + bt + c = 0, trong đó a, b, c là các hằng số (a ≠ 0) và t là một trong các hàm số lượng giác.
- Ví dụ: 3tan2 x 2tan x 1 = 0 là phương trình bậc hai đối với tan x
3. Phương trình bậc nhất đối với sin x và cos x
- Công thức biến đổi biểu thức asin x + bcos x :
asin x + bcos x = (1)
với (a2 + b2 ≠ 0)
- Xét phương trình: asin x + bcos x = c (2)
với a, b, c ∈ R; a, b không đồng thời bằng 0 (a2 + b2 ≠ 0).
+ Nếu a = 0, b ≠ 0 hoặc a ≠ 0, b = 0, phương trình (2) có thể đưa ngay về phương trình lượng giác cơ bản.
+ Nếu a ≠ 0, b ≠ 0, ta áp dụng công thức (1)
1. Phương trình bậc nhất với một hàm số lượng giác:
- Cách giải:
+ Bước 1: Chuyển vế
+ Bước 2: Chia hai vế của phương trình đã cho cho a
+ Bước 3: Giải phương trình lượng cơ bản.
- Ví dụ: Giải phương trình: 2sin x – √3 = 0
Ta có: 2sin x – √3 = 0 ⇔ 2sin x = √3
2. Phương trình bậc hai đối với một hàm số lượng giác:
- Cách giải:
+ Bước 1: Đặt biểu thức lượng giác làm ẩn phụ và đặt điều kiện cho ẩn phụ (nếu có)
+ Bước 2: Giải phương trình bậc hai theo ẩn phụ này
+ Bước 3: Ta đưa về việc giải các phương trình lượng giác cơ bản.
- Ví dụ: Giải phương trình:
3cos2x – 2cos x – 1 = 0
Đặt cos x = t với điều kiện –1 ≤ t ≤ 1 (*)
Khi đó phương trình đã cho có dạng: 3t2 – 2t – 1 = 0 (**)
Giải phương trình (**) ta được hai nghiệm t1 = 1 và t2 = -1/3 thoả mãn điều kiện (*)
Vậy ta có:
TH1: cos x = 1 ⇔ x = k2π (k ∈ Z).
TH2: cos x = -1/3 ⇔ x = ±arccos (-1/3) + k2π (k ∈ Z)
Bài giảng: Bài 3: Một số phương trình lượng giác thường gặp (Tiết 2) - Thầy Lê Thành Đạt (Giáo viên VietJack)
Xem thêm các dạng bài tập Toán lớp 11 có trong đề thi THPT Quốc gia khác:
- Lý thuyết Tổng hợp chương Hàm số lượng giác - phương trình lượng giác
- Lý thuyết Quy tắc đếm
- Lý thuyết Hoán vị - Chỉnh hợp - Tổ hợp
- Lý thuyết Nhị thức Niu-tơn
- Lý thuyết Phép thử và biến cố
- Giải Tiếng Anh 11 Global Success
- Giải sgk Tiếng Anh 11 Smart World
- Giải sgk Tiếng Anh 11 Friends Global
- Lớp 11 - Kết nối tri thức
- Soạn văn 11 (hay nhất) - KNTT
- Soạn văn 11 (ngắn nhất) - KNTT
- Giải sgk Toán 11 - KNTT
- Giải sgk Vật Lí 11 - KNTT
- Giải sgk Hóa học 11 - KNTT
- Giải sgk Sinh học 11 - KNTT
- Giải sgk Lịch Sử 11 - KNTT
- Giải sgk Địa Lí 11 - KNTT
- Giải sgk Giáo dục KTPL 11 - KNTT
- Giải sgk Tin học 11 - KNTT
- Giải sgk Công nghệ 11 - KNTT
- Giải sgk Hoạt động trải nghiệm 11 - KNTT
- Giải sgk Giáo dục quốc phòng 11 - KNTT
- Giải sgk Âm nhạc 11 - KNTT
- Lớp 11 - Chân trời sáng tạo
- Soạn văn 11 (hay nhất) - CTST
- Soạn văn 11 (ngắn nhất) - CTST
- Giải sgk Toán 11 - CTST
- Giải sgk Vật Lí 11 - CTST
- Giải sgk Hóa học 11 - CTST
- Giải sgk Sinh học 11 - CTST
- Giải sgk Lịch Sử 11 - CTST
- Giải sgk Địa Lí 11 - CTST
- Giải sgk Giáo dục KTPL 11 - CTST
- Giải sgk Hoạt động trải nghiệm 11 - CTST
- Giải sgk Âm nhạc 11 - CTST
- Lớp 11 - Cánh diều
- Soạn văn 11 Cánh diều (hay nhất)
- Soạn văn 11 Cánh diều (ngắn nhất)
- Giải sgk Toán 11 - Cánh diều
- Giải sgk Vật Lí 11 - Cánh diều
- Giải sgk Hóa học 11 - Cánh diều
- Giải sgk Sinh học 11 - Cánh diều
- Giải sgk Lịch Sử 11 - Cánh diều
- Giải sgk Địa Lí 11 - Cánh diều
- Giải sgk Giáo dục KTPL 11 - Cánh diều
- Giải sgk Tin học 11 - Cánh diều
- Giải sgk Công nghệ 11 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 11 - Cánh diều
- Giải sgk Giáo dục quốc phòng 11 - Cánh diều
- Giải sgk Âm nhạc 11 - Cánh diều