Các dạng bài tập Đạo hàm có lời giải



Các dạng bài tập Đạo hàm Toán lớp 11 sách mới Kết nối tri thức, Chân trời sáng tạo, Cánh diều với các dạng bài tập chọn lọc có phương pháp giải chi tiết giúp bạn biết cách làm bài tập Đạo hàm lớp 11.

Xem thêm các dạng bài tập Toán 11 sách mới:




Lưu trữ: Các dạng bài tập Đạo hàm (sách cũ)

Bài tập tính đạo hàm bằng định nghĩa

+ Định nghĩa đạo hàm của hàm số: Cho hàm số y= f(x) xác định trên khoảng (a; b) và x0∈(a;b). Nếu tồn tại giới hạn hữu hạn:

Bài tập tính đạo hàm bằng định nghĩa cực hay, có lời giải

Thì giới hạn đó được gọi là đạo hàm của hàm số y= f( x) tại điểm x0 và kí hiệu:

Bài tập tính đạo hàm bằng định nghĩa cực hay, có lời giải

+ Quy tắc tính đạo hàm bằng định nghĩa:

Bước 1: giả sử ∆ x là số gia của đối số x0. Tính ∆ y= f(x0 + ∆x) – f(x0) .

Bước 2: Lập tỉ số ∆y/∆x

Bước 3.

Bài tập tính đạo hàm bằng định nghĩa cực hay, có lời giải

Ví dụ 1. Giới hạn (nếu tồn tại) nào sau đây dùng để định nghĩa đạo hàm của hàm số y= f(x) tại x0 < 1 ?

Bài tập tính đạo hàm bằng định nghĩa cực hay, có lời giải

Hướng dẫn giải

Theo định nghĩa đạo hàm của hàm số tại một điểm thì biểu thức ở đáp án C đúng.

Chọn C.

Ví dụ 2. Cho hàm số y= f(x) liên tục tại x0. Đạo hàm của hàm số y= f(x) tại x0

Bài tập tính đạo hàm bằng định nghĩa cực hay, có lời giải

Hướng dẫn giải

Bài tập tính đạo hàm bằng định nghĩa cực hay, có lời giải

Chọn C.

Ví dụ 3. Số gia của hàm số y= f(x )= x3 + 1 ứng với x0= 1 và ∆ x= 1 bằng bao nhiêu?

A. – 10        B . 7        C. - 1.        D. 0

Hướng dẫn giải

Ta có ∆y= f( x0+ ∆x)-f(x0 )=( x0+ ∆x)3+1- x03-1

= 3.x02.∆x+3x0 ( ∆x)2+( ∆x)3

Với x0 =1 và ∆ x=1 thì ∆ y=7.

Chọn B

Viết phương trình tiếp tuyến khi biết tiếp điểm

- Đường cong (C): y = f(x) có tiếp tuyến tại điểm có hoành độ xo khi và chỉ khi hàm số y = f(x) khả vi tại xo. Trong trường hợp (C) có tiếp tuyến tại điểm có hoành độ xothì tiếp tuyến đó có hệ số góc f ’(xo)

- Phương trình tiếp tuyến của đồ thị (C): y = f(x) tại điểm M(xo; f(xo)) có dạng :

y = f’(xo)(x-xo) + f(xo)

Bài toán 1. Viết phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại điểm M(xo; f(xo))

Giải: Tiếp tuyến của đồ thị hàm số y = f(x) tại M(xo;f(xo)) là:

y = f’(xo)(x-xo)+f(xo)        (1)

Bài toán 2. Viết phương trình tiếp tuyến của đồ thị hàm số y = f(x) biết hoành độ tiếp điểm x = xo

Giải:

Tính yo = f(xo) và f’(xo). Từ đó suy ra phương trình tiếp tuyến:

y = f’(xo)(x-xo) + yo

Bài toán 3. Viết phương trình tiếp tuyến của đồ thị hàm số y = f(x) biết tung độ tiếp điểm bằng yo

Giải. Gọi M(xo, yo) là tiếp điểm

Giải phương trình f(x) = yo ta tìm được các nghiệm xo.

Tính y’(xo) và thay vào phương trình (1)

Bài 1: Cho hàm số y = x3+3x2+1 có đồ thị là (C). Viết phương trình tiếp tuyến của (C) :

1. Tại điểm M( -1;3)

2. Tại điểm có hoành độ bằng 2

Hướng dẫn:

Hàm số đã cho xác định D = R

Ta có: y’ = 3x2 + 6x

1. Ta có: y’(-1) = -3, khi đó phương trình tiếp tuyến tại M là:

y = -3.(x + 1) + 3 = - 3x

2. Thay x = 2 vào đồ thị của (C) ta được y = 21

Tương tự câu 1, phương trình là:

y = y’(2).(x – 2) + 21 = 24x – 27

Bài 2: Gọi (C) là đồ thị của hàm số Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án. Gọi M là một điểm thuộc (C) có khoảng cách đến trục hoành độ bằng 5. Viết phương trình tiếp tuyến của (C) tại M

Hướng dẫn:

Khoảng cách từ M đến trục Ox bằng 5 ⇔ yM = ±5.

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Phương trình tiếp tuyến của (C) tại điểm M(-7/3,-5) là y = 9x + 16

Phương trình tiếp tuyến của (C) tại điểm M( - 4, 5) là y = 4x + 21

Bài 3: Cho hàm số y = x3 + 3x2 – 6x + 1 (C)

Viết phương trình tiếp tuyến của đồ thị (C) biết hoành độ tiếp điểm bằng 1

Hướng dẫn:

Gọi M(xo; yo) là tọa độ tiếp điểm.

Ta có xo = 1 ⇒ yo = - 1

y = x3 + 3x2 – 6x + 1 nên y’ = 3x2 + 6x – 6.

Từ đó suy ra y’(1) = 3.

Vậy phương trình tiếp tuyến cần tìm là y = 3(x – 1) – 1 = 3x – 4

Viết phương trình tiếp tuyến của đồ thị hàm số khi biết hệ số góc

*Ý nghĩa hình học của đạo hàm:

Đạo hàm của hàm số y= f(x) tại điểm x0 là hệ số góc của tiếp tuyến với đồ thị (C) của hàm số tại điểm M0(x0; f(x0) ).

Khi đó phương trình tiếp tuyến của (C) tại điểm M0 là:

y–y0=f' (x0).(x–x0)

1.- Gọi ∆ là tiếp tuyến cần tìm có hệ số góc k.

- Giả sử M(x0 ; y0) là tiếp điểm. Khi đó x0 thỏa mãn: f’(x0)= k (*) .

- Giải (*) tìm x0. Suy ra y0= f(x0). Phương trình tiếp tuyến cần tìm là: y= k(x- x0) + y0

2. Cho đường thẳng d : y= kdx + b

+) Nếu ∆ // d thì k∆ = kd

+) Nếu ∆ vuông góc với d thì : k∆. kd = -1 ⇔ k∆ = (- 1)/kd

Viết phương trình tiếp tuyến của đồ thị hàm số khi biết hệ số góc

Ví dụ 1 : Viết phương trình tiếp tuyến của đồ thị (C) :y=-x4-x2+6, biết tiếp tuyến vuông góc với đường thẳng d:y=1/6x-1 .

A.y= 6x+ 1        B. y= - 6x+ 6        C.y= -6x+ 10        D. y= 6x+ 12

Hướng dẫn giải

Hàm số đã cho xác định D=R.

Đạo hàm của hàm số: y’= - 4x3 – 2x

Gọi ∆ là tiếp tuyến của đồ thị (C) của hàm số và ∆ vuông góc với đường thẳng d : y=1/6x-1 .

⇒ đường thẳng ∆ có hệ số góc : k= -6.

Cách 1: Gọi M(x0 ; y0) là tọa độ tiếp điểm của tiếp tuyến ∆ và đồ thị (C) của hàm số .

Khi đó, ta có phương trình: y'(x0)=-6 ⇔-4x03-2x0=-6

⇔(x0-1)(2x02+2x0+3)=0(*).

Vì 2x02+2x0+3 > 0,∀x0∈R nên phương trình ( *) tương đường x0 =1

⇒ y0= y(1)= 4 nên M( 1 ; 4)

Phương trình tiếp tuyến cần tìm là: y=-6(x-1)+4=-6x+10.

Cách 2: Phương trình tiếp tuyến ∆ có dạng y=-6x+m ( **)

Do ∆ tiếp xúc (C) tại điểm M(x0 ; y0) khi hệ phương trình sau có nghiệm x0 :

Viết phương trình tiếp tuyến của đồ thị hàm số khi biết hệ số góc

Thay vào (**) ta có phương trình tiếp tuyến là: y= - 6x+ 10

Chọn C.

Ví dụ 2. Cho hàm số y=1/3 x3-x+2/3 có đồ thị là (C). Tìm trên đồ thị (C) điểm mà tại đó tiếp tuyến của đồ thị vuông góc với đường thẳng d: y=-1/3 x+2/3.

A. ( 1; -2) và ( -2; 0)        B. ( - 2; 0) và ( 2; 4/3 )

C. ( -2; 5) và ( 1;0)        D. Đáp án khác

Hướng dẫn giải

Hàm số đã cho xác định D= R.

Ta có đạo hàm: y'=x2-1

GọiM(x0;y0)∈(C) ⇔y0=1/3 x03-x0+2/3,

Tiếp tuyến ∆ tại điểm M có hệ số góc: y'(x0)=x02-1

Đường thẳng d: có hệ số góc k2=-1/3

Viết phương trình tiếp tuyến của đồ thị hàm số khi biết hệ số góc




Giải bài tập lớp 11 sách mới các môn học