30+ Các dạng bài tập Hàm số liên tục (chọn lọc, có lời giải)
Tổng hợp các dạng bài tập Hàm số liên tục Toán lớp 11 sách mới Kết nối tri thức, Chân trời sáng tạo, Cánh diều với phương pháp giải chi tiết và bài tập đa dạng giúp bạn biết cách làm bài tập hàm số liên tục lớp 11.
Xem thêm các dạng bài tập Toán 11 sách mới:
- (Chuyên đề) Các dạng bài tập Hàm số lượng giác, phương trình lượng giác
- (Chuyên đề) Các dạng bài tập Dãy số, Cấp số cộng và cấp số nhân
- (Chuyên đề) Các dạng bài tập Các số đặc trưng đo xu thế trung tâm của mẫu số liệu ghép nhóm
- (Chuyên đề) Các dạng bài tập Quan hệ song song trong không gian
- (Chuyên đề) Các dạng bài tập Giới hạn. Hàm số liên tục
- (Chuyên đề) Các dạng bài tập Vectơ trong không gian. Quan hệ vuông góc trong không gian
- (Chuyên đề) Các dạng bài tập Quan hệ vuông góc trong không gian
- (Chuyên đề) Các dạng bài tập Đạo hàm
- Các dạng bài tập Đạo hàm
- (Chuyên đề) Các dạng bài tập Hàm số mũ & Hàm số lôgarit
- Chuyên đề Các quy tắc tính xác suất
- Các dạng bài tập Xác suất
Lưu trữ: Các dạng bài tập Hàm số liên tục (sách cũ)
- Dạng 1: Xét tính liên tục của hàm số Xem chi tiết
- Dạng 2: Tìm m để hàm số liên tục Xem chi tiết
- 40 bài tập trắc nghiệm Hàm số liên tục có đáp án (phần 1) Xem chi tiết
- 40 bài tập trắc nghiệm Hàm số liên tục có đáp án (phần 2) Xem chi tiết
Cách xét tính liên tục của hàm số
Vấn đề 1: Xét tính liên tục của hàm số tại một điểm
- Cho hàm số y = f(x) có tập xác định D và điểm x0 ∈ D. Để xét tính liên tục của hàm số trên tại điểm x = x0 ta làm như sau:
+ Tìm giới hạn của hàm số y = f(x) khi x → x0 và tính f(x0)
+ Nếu tồn tại thì ta so sánh
với f(x0).
Nếu = f(x0) thì hàm số liên tục tại x0
Chú ý:
1. Nếu hàm số liên tục tại x0 thì trước hết hàm số phải xác định tại điểm đó.
2.
3. Hàm số liên tục tại x = x0 ⇔ = k
4. Hàm số liên tục tại điểm x = x0 khi và chỉ khi
Vấn đề 2: Xét tính liên tục của hàm số trên một tập
Ta sử dụng các định lí về tính liên tục của hàm đa thức, lương giác, phân thức hữu tỉ …
Nếu hàm số cho dưới dạng nhiều công thức thì ta xét tính liên tục trên mỗi khoảng đã chia và tại các điểm chia của các khoảng đó.
Bài 1: Xét tính liên tục của hàm số sau tại x = 3
Hướng dẫn:
1. Hàm số xác định trên R
Ta có f(3) = 10/3 và
Vậy hàm số không liên tục tại x = 3
2. Ta có f(3) = 4 và
Vậy hàm số gián đoạn tại x = 3
Bài 2: Xét tính liên tục của các hàm số sau trên toàn trục số
1. f(x) = tan2x + cosx
Hướng dẫn:
1. TXĐ:
Vậy hàm số liên tục trên D
2. Điều kiện xác định:
Vậy hàm số liên tục trên (1;2) ∪ (2,+∞)
Bài 3: Xét tính liên tục của hàm số sau tại điểm chỉ ra
Hướng dẫn:
Ta có
Vậy hàm số liên tục tại x = 1
Cách tìm m để hàm số liên tục
Ta sử dụng điều kiện để hàm số liên tục và điều kiện để phương trình có nghiệm để làm các bài toán dạng này.
- Điệu kiện để hàm số liên tục tại x0:
- Điều kiện để hàm số liên tục trên một tập D là f(x) liên tục tại mọi điểm thuộc D.
- Phương trình f(x) = 0 có ít nhất một nghiệm trên D nếu hàm số y = f(x) liên tục trên D và có hai số a, b thuộc D sao cho f(a).f(b) < 0.
Phương trình f(x) = 0 có k nghiệm trên D nếu hàm số y = f(x) liên tục trên D và tồn tại k khoảng rời nhau (ai ; ai+1) (i = 1,2,…,k) nằm trong D sao cho f(ai).f(ai+1) < 0.
Bài 1: Xác định a để hàm số liên tục trên R.
Hướng dẫn:
Hàm số xác định trên R
Với x < 2 ⇒ hàm số liên tục
Với x > 2 ⇒ hàm số liên tục
Với x = 2 ta có
Hàm số liên tục trên R ⇔ hàm số liên tục tại x = 2
Vậy a = -1, a = 0.5 là những giá trị cần tìm.
Bài 2: Cho hàm số f(x) = x3 – 1000x2 + 0,01 . phương trình f(x) = 0 có nghiệm thuộc khoảng nào trong các khoảng sau đây ?
I. (–1; 0) II. (0; 1) III. (1; 2)
Hướng dẫn:
Ta có hàm số y = f(x) = x3 – 1000x2 + 0,01 là hàm liên tục trên R
f(0) = 0.01 và f(-1) = - 1001 + 0.01 < 0. Nên f(0).(-1) < 0.
Vậy hàm số có nghiệm trong khoảng I
Bài 3: Tìm m để các hàm số sau liên tục trên R
Hướng dẫn:
Với x < 0 ⇒ hàm số liên tục
Với x > 0 ⇒ hàm số liên tục
Với x = 0 ta có
Hàm số liên tục trên R ⇔ hàm số liên tục tại x = 0
Xem thêm các dạng bài tập Toán lớp 11 có trong đề thi THPT Quốc gia khác:
- Giải Tiếng Anh 11 Global Success
- Giải sgk Tiếng Anh 11 Smart World
- Giải sgk Tiếng Anh 11 Friends Global
- Lớp 11 - Kết nối tri thức
- Soạn văn 11 (hay nhất) - KNTT
- Soạn văn 11 (ngắn nhất) - KNTT
- Giải sgk Toán 11 - KNTT
- Giải sgk Vật Lí 11 - KNTT
- Giải sgk Hóa học 11 - KNTT
- Giải sgk Sinh học 11 - KNTT
- Giải sgk Lịch Sử 11 - KNTT
- Giải sgk Địa Lí 11 - KNTT
- Giải sgk Giáo dục KTPL 11 - KNTT
- Giải sgk Tin học 11 - KNTT
- Giải sgk Công nghệ 11 - KNTT
- Giải sgk Hoạt động trải nghiệm 11 - KNTT
- Giải sgk Giáo dục quốc phòng 11 - KNTT
- Giải sgk Âm nhạc 11 - KNTT
- Lớp 11 - Chân trời sáng tạo
- Soạn văn 11 (hay nhất) - CTST
- Soạn văn 11 (ngắn nhất) - CTST
- Giải sgk Toán 11 - CTST
- Giải sgk Vật Lí 11 - CTST
- Giải sgk Hóa học 11 - CTST
- Giải sgk Sinh học 11 - CTST
- Giải sgk Lịch Sử 11 - CTST
- Giải sgk Địa Lí 11 - CTST
- Giải sgk Giáo dục KTPL 11 - CTST
- Giải sgk Hoạt động trải nghiệm 11 - CTST
- Giải sgk Âm nhạc 11 - CTST
- Lớp 11 - Cánh diều
- Soạn văn 11 Cánh diều (hay nhất)
- Soạn văn 11 Cánh diều (ngắn nhất)
- Giải sgk Toán 11 - Cánh diều
- Giải sgk Vật Lí 11 - Cánh diều
- Giải sgk Hóa học 11 - Cánh diều
- Giải sgk Sinh học 11 - Cánh diều
- Giải sgk Lịch Sử 11 - Cánh diều
- Giải sgk Địa Lí 11 - Cánh diều
- Giải sgk Giáo dục KTPL 11 - Cánh diều
- Giải sgk Tin học 11 - Cánh diều
- Giải sgk Công nghệ 11 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 11 - Cánh diều
- Giải sgk Giáo dục quốc phòng 11 - Cánh diều
- Giải sgk Âm nhạc 11 - Cánh diều