Lý thuyết Toán 11 Chương 5 (sách mới)



Bài viết Tổng hợp Lý thuyết Toán 11 Chương 5 sách mới Cánh diều, Kết nối tri thức, Chân trời sáng tạo hay, chi tiết giúp bạn nắm vững kiến thức trọng tâm Toán 11 Chương 5.

Lời giải bài tập Toán 11 Chương 5 sách mới:




Lưu trữ: Lý thuyết Toán 11 Chương 5 (sách cũ)

Lý thuyết Định nghĩa và ý nghĩa của đạo hàm

1. Định nghĩa đạo hàm tại một điểm

    Cho hàm số y = f(x) xác định trên khoảng (a; b) và x0 ∈ (a; b). Nếu tồn tại giới hạn (hữu hạn)

    Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

thì giới hạn đó được gọi là đạo hàm của hàm số y = f(x) tại x0 và kí hiệu là f’(x0) (hoặc y’(x0)), tức là

    Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Chú ý:

    Đại lượng Δx = x – x0 gọi là số gia của đối số x tại x0.

    Đại lượng Δy = f(x) – f(x0) = f(x0 + Δx) – f(x0) được gọi là số gia tương ứng của hàm số. Như vậy

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

2. Cách tính đạo hàm bằng định nghĩa

    Bước 1. Giả sử Δx là số gia của đối số x tại x0, tính Δy = f(x0 + Δx) – f(x0).

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

3. Quan hệ giữa sự tồn tại của đạo hàm và tính liên tục của hàm số

Định lí 1

    Nếu hàm số y = f(x) có đạo hàm tại x0 thì nó liên tục tại x0.

Chú ý:

    a) Nếu y = f(x) gián đoạn tại x0 thì nó không có đạo hàm tại x0.

    b) Nếu y = f(x) liên tục tại x0 thì có thể không có đạo hàm tại x0.

4. Ý nghĩa hình học của đạo hàm

Định lí 2

    Đạo hàm của hàm số y = f(x) tại điểm x0 là hệ số góc của tiếp tuyến M0T của đồ thị hàm số tại điểm M0(x0; f(x0)).

Định lí 3

    Phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại điểm M0(x0; f(x0)) là

        y – y0 = f’(x0)(x – x0)

    trong đó y0 = f(x0).

5. Ý nghĩa vật lí của đạo hàm

Vận tốc tức thời: v(t0) = s’(t0).

Cường độ tức thời: I(t0) = Q’(t0).

Định nghĩa

    Hàm số y = f(x) được gọi là có đạo hàm trên khoảng (a; b) nếu nó có đạo hàm tại mọi điểm x trên khoảng đó.

    Khi đó, ta gọi hàm số f’: (a; b) → R

    x → f’(x)

    là đạo hàm của hàm số y = f(x) trên khoảng (a; b), kí hiệu là y’ hay f’(x).

Lý thuyết Quy tắc tính đạo hàm

Định lí 1

    Hàm số y = xn (n ∈ N, n > 1) có đạo hàm tại mọi x ∈ R và (xn)’ = nxn – 1

Định lí 2

    Hàm số y = √x có đạo hàm tại mọi x dương và Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

1. Định lí

Định lí 3

Giả sử u = u(x), v = v(x) là các hàm số có đạo hàm tại điểm x thuộc khoảng xác định. Ta có

    (u + v)’ = u’ + v’

    (u – v)’ = u’ – v’

    (uv)’ = u’v + v’u

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

2. Hệ quả

Hệ quả 1

    Nếu k là một hằng số thì (ku)’ = ku’.

Hệ quả 2

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Định lí 4

    Nếu hàm số u = g(x) có đạo hàm tại x là u'x và hàm số y = f(u) có đạo hàm tại u là y'u thì hàm hợp y = f(g(x)) có đạo hàm tại x là y'x = y'u.u'x .

Lý thuyết Đạo hàm của hàm số lượng giác

1. Giới hạn của Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Định lý 1

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

2. Đạo hàm của hàm số y = sinx

Định lý 2

    Hàm số y = sin x có đạo hàm tại mọi x ∈ R và (sin x)’ = cosx.

    Nếu y = sin u và u = u(x) thì (sin u)’ = u’.cos u.

3. Đạo hàm của hàm số y = cos x

Định lý 3

    Hàm số y = cos x có đạo hàm tại mọi x ∈ R và (cos x)’ = –sin x .

    Nếu y = cos u và u = u(x) thì (cos u)’ = –u’.sin u

4. Đạo hàm của hàm số y = tan x

Định lý 4

    Hàm số y = tan x có đạo hàm tại mọi x ≠ π/2 + kπ và Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

    Nếu y = tan u và u = u(x) thì Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

5. Đạo hàm của hàm số y = cot x

Định lý 5

    Hàm số y = cot x có đạo hàm tại mọi x ≠ kπ và Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

    Nếu y = cot u và u = u(x) thì Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Xem thêm các loạt bài tổng hợp lý thuyết môn Toán lớp 11 hay, chi tiết khác:




Giải bài tập lớp 11 sách mới các môn học