Lý thuyết Toán 11 Chương 2 (sách mới)
Bài viết Tổng hợp Lý thuyết Toán 11 Chương 2 sách mới Cánh diều, Kết nối tri thức, Chân trời sáng tạo hay, chi tiết giúp bạn nắm vững kiến thức trọng tâm Toán 11 Chương 2.
(Cánh diều) Lý thuyết Toán 11 Chương 2: Dãy số. Cấp số cộng. Cấp số nhân
(Kết nối tri thức) Lý thuyết Toán 11 Chương 2: Dãy số. Cấp số cộng và cấp số nhân
(Chân trời sáng tạo) Lý thuyết Toán 11 Chương 2: Dãy số. Cấp số cộng. Cấp số nhân
Lời giải bài tập Toán 11 Chương 2 sách mới:
(Kết nối tri thức) Giải Toán 11 Chương 2: Dãy số. Cấp số cộng và cấp số nhân
(Chân trời sáng tạo) Giải Toán 11 Chương 2: Dãy số. Cấp số cộng. Cấp số nhân
(Cánh diều) Giải Toán 11 Chương 2: Dãy số. Cấp số cộng. Cấp số nhân
Lưu trữ: Lý thuyết Toán 11 Chương 2 (sách cũ)
- Lý thuyết Quy tắc đếm
- Lý thuyết Hoán vị - Chỉnh hợp - Tổ hợp
- Lý thuyết Nhị thức Niu-tơn
- Lý thuyết Phép thử và biến cố
- Lý thuyết Xác suất của biến cố
- Lý thuyết Tổng hợp chương Tổ hợp - Xác suất
1. Quy tắc cộng
- Quy tắc: Một công việc được hoàn thành bởi một trong hai hành động. Nếu hành động này có m cách thực hiện, hành động kia có n cách thực hiện không trùng với bất kì cách nào của hành động thứ nhất thì công việc đó có m+n cách thực hiện.
- Quy tắc cộng có thể mở rộng cho nhiều hành động.
2. Quy tắc nhân
- Quy tắc: Một công việc được hoàn thành bởi hai hành động liên tiếp. Nếu có m cách thực hiện hành động thứ nhất và ứng với mỗi cách đó có n cách thực hiện hành động thứ hai thì có m.n cách hoàn thành công việc.
- Quy tắc nhân có thể mở rộng cho nhiều hành động.
Lý thuyết Hoán vị - Chỉnh hợp - Tổ hợp
1. Hoán vị
a) Định nghĩa:
- Cho tập hợp A gồm n phần tử (n ≥ 1).
Mỗi kết quả của sự sắp xếp thứ tự n phần tử của tập hợp A được gọi là một hoán vị của n phần tử.
- Lưu ý: Hai hoán vị của n phần tử chỉ khác nhau ở thứ tự sắp xếp.
b) Số các hoán vị:
- Kí hiệu Pn là số các hoán vị của n phần tử.
- Định lý:
Pn = n(n – 1)…2.1 = n!
2. Chỉnh hợp
a) Định nghĩa:
- Cho tập hợp A gồm n phần tử (n ≥ 1).
Kết quả của việc lấy k phần tử khác nhau từ n phần tử của tập hợp A và sắp xếp chúng theo một thứ tự nào đó được gọi là một chỉnh hợp chập k của n phần tử đã cho.
b) Số các chỉnh hợp:
- Kí hiệu: Ank là số các chỉnh hợp chập k của n phần tử (1 ≤ k ≤ n).
- Định lý:
- Lưu ý: Mỗi hoán vị của n phần tử cũng chính là một chỉnh hợp chập n của n phần tử đó. Vì vậy, ta có: Pn = Ann
3. Tổ hợp
a) Định nghĩa:
- Giả sử A có n phần tử (n ≥ 1). Mỗi tập hợp gồm k phần tử của A được gọi là một tổ hợp chập k của n phần tử đã cho. (1 ≤ k ≤ n).
- Quy ước: Tổ hợp chập 0 của n phần tử là tập rỗng.
b) Số các tổ hợp:
- Kí hiệu Cnk là số các tổ hợp chập k của n phần tử (0 ≤ k ≤ n).
- Định lý:
c) Tính chất của các số Cnk
- Tính chất 1:
Cnk = Cnn - k (0 ≤ k ≤ n)
- Tính chất 2:
Lý thuyết Nhị thức Niu-tơn
1. Công thức nhị thức Niu-tơn
(a + b)n = Cn0an + Cn1an - 1b + … + Cnkan - kbk + … + Cnn-1abn-1 + Cnnbn (1)
2. Hệ quả
- Với a = b = 1, ta có: 2n = Cn0 + Cn1 + … + Cnn.
- Với a = 1; b = –1, ta có: 0 = Cn0 – Cn1 + … + (–1)kCnk + … + (–1)Cnn.
3. Chú ý:
Trong biểu thức ở vế phải của công thức (1):
-Số các hạng tử là n + 1;
- Các hạng tử có số mũ của a giảm dần từ n đến 0, số mũ của b tăng dần từ 0 đến n, nhưng tổng các số mũ của a và b trong mỗi hạng tử luôn bằng n (quy ước a0 = b0 = 1);
- Các hệ số của mỗi hạng tử cách đều hai hạng tử đầu và cuối thì bằng nhau.
Xem thêm các loạt bài tổng hợp lý thuyết môn Toán lớp 11 hay, chi tiết khác:
- Tổng hợp lý thuyết chương Hàm số lượng giác - phương trình lượng giác
- Tổng hợp lý thuyết chương Dãy số - Cấp số cộng và cấp số nhân
- Tổng hợp lý thuyết chương Giới hạn
- Tổng hợp lý thuyết chương Đạo hàm
- Tổng hợp lý thuyết chương Phép dời hình và phép đồng dạng trong mặt phẳng
- Tổng hợp lý thuyết chương Đường thẳng và mặt phẳng trong không gian. Quan hệ song song
- Tổng hợp lý thuyết chương Vectơ trong không gian. Quan hệ vuông góc trong không gian
- Giải Tiếng Anh 11 Global Success
- Giải sgk Tiếng Anh 11 Smart World
- Giải sgk Tiếng Anh 11 Friends Global
- Lớp 11 - Kết nối tri thức
- Soạn văn 11 (hay nhất) - KNTT
- Soạn văn 11 (ngắn nhất) - KNTT
- Giải sgk Toán 11 - KNTT
- Giải sgk Vật Lí 11 - KNTT
- Giải sgk Hóa học 11 - KNTT
- Giải sgk Sinh học 11 - KNTT
- Giải sgk Lịch Sử 11 - KNTT
- Giải sgk Địa Lí 11 - KNTT
- Giải sgk Giáo dục KTPL 11 - KNTT
- Giải sgk Tin học 11 - KNTT
- Giải sgk Công nghệ 11 - KNTT
- Giải sgk Hoạt động trải nghiệm 11 - KNTT
- Giải sgk Giáo dục quốc phòng 11 - KNTT
- Giải sgk Âm nhạc 11 - KNTT
- Lớp 11 - Chân trời sáng tạo
- Soạn văn 11 (hay nhất) - CTST
- Soạn văn 11 (ngắn nhất) - CTST
- Giải sgk Toán 11 - CTST
- Giải sgk Vật Lí 11 - CTST
- Giải sgk Hóa học 11 - CTST
- Giải sgk Sinh học 11 - CTST
- Giải sgk Lịch Sử 11 - CTST
- Giải sgk Địa Lí 11 - CTST
- Giải sgk Giáo dục KTPL 11 - CTST
- Giải sgk Hoạt động trải nghiệm 11 - CTST
- Giải sgk Âm nhạc 11 - CTST
- Lớp 11 - Cánh diều
- Soạn văn 11 Cánh diều (hay nhất)
- Soạn văn 11 Cánh diều (ngắn nhất)
- Giải sgk Toán 11 - Cánh diều
- Giải sgk Vật Lí 11 - Cánh diều
- Giải sgk Hóa học 11 - Cánh diều
- Giải sgk Sinh học 11 - Cánh diều
- Giải sgk Lịch Sử 11 - Cánh diều
- Giải sgk Địa Lí 11 - Cánh diều
- Giải sgk Giáo dục KTPL 11 - Cánh diều
- Giải sgk Tin học 11 - Cánh diều
- Giải sgk Công nghệ 11 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 11 - Cánh diều
- Giải sgk Giáo dục quốc phòng 11 - Cánh diều
- Giải sgk Âm nhạc 11 - Cánh diều