Lý thuyết Phương trình lượng giác cơ bản lớp 11 (hay, chi tiết)



Bài viết Lý thuyết Phương trình lượng giác cơ bản lớp 11 hay, chi tiết giúp bạn nắm vững kiến thức trọng tâm Lý thuyết Phương trình lượng giác cơ bản.

Bài giảng: Bài 2: Phương trình lượng giác cơ bản - Thầy Lê Thành Đạt (Giáo viên VietJack)

1. Phương trình sin x = a (1)

- Trường hợp |a| > 1: Phương trình (1) vô nghiệm

- Trường hợp |a| ≤ 1: Phương trình (1) có các nghiệm là

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

+ Nếu số thực α thoả mãn điều kiện

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

- Lưu ý:

+ Phương trình sin x = sin α, với α là một số cho trước, có các nghiệm là:

    x = α + k2π    k ∈ Z và x = π – α + k2π    k ∈ Z

Tổng quát: sin f(x) = sin g(x)

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

+ sin x = sin β°

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

+ Các trường hợp đặc biệt:

    a = 1: Phương trình sin x = 1 có các nghiệm là: x = π/2 + k2π    k ∈ Z.

    a = –1: Phương trình sin x = –1 có các nghiệm là: x = -π/2 + k2π    k ∈ Z.

    a = 0: Phương trình sin x = 0 có các nghiệm là: x = x = kπ    k ∈ Z.

2. Phương trình cos x = a (2)

- Trường hợp |a| > 1: Phương trình (2) vô nghiệm

- Trường hợp |a| ≤ 1: Phương trình (2) có các nghiệm là

    x = ±α + k2π, k ∈ Z.

+ Nếu số thực α thoả mãn điều kiện:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

- Lưu ý:

+ Phương trình cos x = cosα, với α là một số cho trước, có các nghiệm là:

    x = ±α + k2π, k ∈ Z.

Tổng quát: cos f(x) = cos g(x) ⇔ f(x) = x = ±g(x) + k2π, k ∈ Z.

+ cos x = cos β° ⇔ x = ±β° + 360°, k ∈ Z.

+ Các trường hợp đặc biệt:

    a = 1: Phương trình cos x = 1 có các nghiệm là: x = k2π, k ∈ Z

    a = –1: Phương trình cos x = –1 có các nghiệm là: x = π + k2π, k ∈ Z

    a = 0: Phương trình cos x = 0 có các nghiệm là: x = π/2 + kπ, k ∈ Z.

3. Phương trình tan x = a (3)

- Điều kiện của phương trình là x ≠ π/2 + kπ, k ∈ Z.

- Nghiệm của phương trình tan x = a là:

    x = arctan α + kπ, k ∈ Z.

- Lưu ý:

+ Phương trình tan x = tan α, với α là một số cho trước, có các nghiệm là:

    x = α + kπ, k ∈ Z.

Tổng quát: tan f(x) = tan g(x) ⇒ f(x) = g(x) + kπ, k ∈ Z.

+ tan x = tan β° ⇔ x = β° + k180°, k ∈ Z.

4. Phương trình cot x = a (4)

- Điều kiện của phương trình là x ≠ kπ, k ∈ Z.

- Nghiệm của phương trình cot x = a là:

    x = arccot α + kπ, k ∈ Z.

- Lưu ý:

+ Phương trình cot x = cot α, với α là một số cho trước, có các nghiệm là:

    x = α + kπ, k ∈ Z.

Tổng quát: cot f(x) = cot g(x) ⇒ f(x) = g(x) + kπ, k ∈ Z.

+ Phương trình cot x = cot β° có các nghiệm là x = β° + k180° , k ∈ Z.

Bài giảng: Bài 2: Phương trình lượng giác cơ bản (Tiết 2) - Thầy Lê Thành Đạt (Giáo viên VietJack)

Xem thêm các dạng bài tập Toán lớp 11 có trong đề thi THPT Quốc gia khác:


tong-hop-ly-thuyet-chuong-ham-so-luong-giac-phuong-trinh-luong-giac.jsp


Giải bài tập lớp 11 sách mới các môn học