Phương pháp Tìm tập xác định, tập giá trị của hàm số lượng giác
Với Phương pháp Tìm tập xác định, tập giá trị của hàm số lượng giác môn Toán lớp 11 sẽ giúp học sinh nắm vững lý thuyết, biết cách làm các dạng bài tập từ đó có kế hoạch ôn tập hiệu quả để đạt kết quả cao trong các bài thi Toán 11.
1. Lý thuyết
a. Hàm số y = sinx
- Tập xác định: D = R
- Tập giá trị: [-1;1]
b. Hàm số y = cosx
- Tập xác định: D = R
- Tập giá trị: [-1;1]
c. Hàm số y = tanx
- Tập xác định: D = R \ { + kπ, k ∈ Z}
- Tập giá trị:R
d. Hàm số y = cotx
- Tập xác định: D = R \ { kπ, k ∈ Z}
- Tập giá trị: R
2. Các dạng bài tập
Dạng 1. Tìm tập xác định của hàm số lượng giác
- Phương pháp giải:
xác định khi g(x) ≠ 0
xác định khi f(x) ≥ 0
xác định khi g(x) > 0
y = tan[u(x)] xác định khi u(x) ≠ + kπ, k ∈ Z
y = cot[u(x)] xác định khi u(x) ≠ kπ, k ∈ Z
sin x ≠ 0 khi x ≠ kπ (k ∈ Z)
cos x ≠ 0 khi x ≠ + kπ (k ∈ Z)
- Ví dụ minh họa:
Ví dụ 1. Tìm tập xác định của hàm số sau
Lời giải
a)
Điều kiện xác định:
Vậy tập xác định của hàm số là
b) Điều kiện xác định: 2 - sin x ≥ 0
⇔ sin x ≤ 2 (đúng ∀x ∈ R ) vì -1 ≤ sin x ≤ 1 ∀x ∈ R
Vậy tập xác định của hàm số là D = R.
Ví dụ 2. Tìm tập xác định của hàm số sau
Lời giải
a) Điều kiện xác định: sin x - cos x ≠ 0 ⇔ sin x ≠ cos x (*)
+ Trường hợp 1: cosx = 0. Ta có sin2x + cos2x = 1 ⇔ sin2 x = 1 ⇔ sin x = ±1.
Hiển nhiên sin x ≠ cos x
+ Trường hợp 2: cos x ≠ 0. Chia cả hai vế cho cosx
Vậy tập xác định của hàm số là
b) Vì
Điều kiện xác định:
Vậy tập xác định của hàm số là
Dạng 2. Tìm tập giá trị của hàm số lượng giác
- Phương pháp giải:
Sử dụng tính bị chặn của hàm số lượng giác
- Ví dụ minh họa:
Ví dụ 1. Tìm tập giá trị của các hàm số sau:
a) y = 2sin3x – 5
b) y = 2sin2
c) y = |cos(3x-2)| + 4
Lời giải
a) Ta có:
-1 ≤ sin 3x ≤ 1 ∀x ∈ R
⇔ -2 ≤ 2sin 3x ≤ 2 ∀x ∈ R
⇔ -7 ≤ 2sin 3x - 5 ≤ -3 ∀x ∈ R
Vậy tập giá trị: T = [-7;-3].
b) Ta có:
Vậy tập giá trị: T = [5;7].
c) Ta có: 0 ≤ |cos(3x - 2)| ≤ 1∀x ∈ R
⇔ 4 ≤ |cos(3x - 2)| + 4 ≤ 5∀x ∈ R
Vậy tập giá trị: T = [4;5].
Ví dụ 2. Tìm tập giác trị của các hàm số sau:
a)
b) y = cos2x + 4sinx +1
Lời giải
a) Điều kiện xác định: sinx +1 ≥ 0 ⇔ sinx ≥ -1∀x ∈ R.
Tập xác định D = R.
Ta có: -1 ≤ sin x ≤ 1 ∀x ∈ R
⇔ 0 ≤ sinx + 1 ≤ 2 ∀x ∈ R
Vậy tập giá trị: T = [-2,√2 - 2 ]
b) y = cos2x + 4sinx +1 = 1 - 2sin2x + 4sinx +1 = -2sin2x + 4sinx + 2 = -2(sinx – 1)2 + 4.
Ta có: -1 ≤ sin x ≤ 1 ∀x ∈ R
⇔ -2 ≤ sin x - 1 ≤ 0 ∀x ∈ R
⇔ 0 ≤ (sin x - 1)2 ≤ 4 ∀x ∈ R
⇔ -8 ≤ -2(sin x - 1)2 ≤ 0 ∀x ∈ R
⇔ -4 ≤ -2(sin x - 1)2 + 4 ≤ 4 ∀x ∈ R .
Vậy tập giá trị: T = [-4;4].
Dạng 3. Tìm m để hàm số lượng giác có tập xác định là R
- Phương pháp giải:
m ≥ f(x) ∀x ∈ [a,b] => m ≥
m > f(x) ∀x ∈ [a,b] => m >
m ≤ f(x) ∀x ∈ [a,b] => m ≤
m < f(x) ∀x ∈ [a,b] => m <
- Ví dụ minh họa:
Ví dụ 1. Tìm m để hàm số xác định trên R.
Lời giải
Để hàm số xác định trên R thì sin x + m ≥ 0 ∀x ∈ R ⇔ -sin x∀x ∈ R .
Mà ta có -1 ≤ sin x ≤ 1 ∀x ∈ R ⇔ -1 ≤ -sin x ≤ 1 ∀x ∈ R
Nên m ≥ 1
Ví dụ 2. Tìm m để hàm số xác định trên R.
Lời giải
Ta có:
Hàm số xác định trên R khi (sinx – 1)2 + m - 1 ≥ 0 ∀x ∈ R ⇔ m ≥ 1 - (sinx – 1)2 ∀x ∈ R
Ta có:
-1 ≤ sin x ≤ 1 ∀x ∈ R
⇔ -2 ≤ sin x - 1 ≤ 0 ∀x ∈ R
⇔ 0 ≤ (sinx – 1)2 ≤ 4 ∀x ∈ R
⇔ -4 ≤ -(sinx – 1)2 ≤ 0 ∀x ∈ R
⇔ -3 ≤ 1 - (sinx – 1)2 ≤ 1 ∀x ∈ R
Vậy m ≥ 1
3. Bài tập tự luyện
Câu 1. Tập xác định của hàm số là
Câu 2. Tập xác định của hàm số y = tan x + cot x là
Câu 3. Tập xác định của hàm số là:
A. D = [ -1,+∞) B. D = R
C. D = R \ D. D = (-∞, -1]
Câu 4. Tập xác định của hàm số là:
Câu 5. Tập xác định của hàm số là
Câu 6. Tập xác định của hàm số là
Câu 7. Tập xác định của hàm số là
Câu 8. Hàm số nào dưới đây có tập xác định là R?
Câu 9. Tập giá trị của hàm số y = 1 – 2|sin2x| là
A. [1;3] B. [-1;1] C. [-1;3] D. [-1;0]
Câu 10. Tập giá trị của hàm số là
A. [2;3] B. [1;2] C. [2;4] D. [3;4]
Câu 11. Tập giá trị của hàm số y = 2 + sinxcosx có dạng T = [m,M]. Giá trị của m là:
Câu 12. Tập giá trị của hàm số y = 2sin3x +1 là
A. [-1;1] B. [-5;7] C. [0;2] D. [-1;3]
Câu 13. Tìm m để hàm số xác định trên R.
A. m ∈ (-∞; -1) ∪ (1, +∞) B. m ∈ (-∞; -1] ∪ [1, +∞)
C. m ≠ 1 D. m ∈ [-1;1]
Câu 14. Hàm số có tập xác định R khi và chỉ khi:
A. m > 3 B. m < -1 C. m ≥ 3 D. m ≤ -1
Câu 15. Tìm tất cả các giá trị của tham số m để hàm số có tập xác định là R.
A. B. C. Không có m thỏa mãn D. m ≥ 5
Bài 16. Tìm tập giá trị của hàm số y = sinx + cosx.
Bài 17. Tìm tập giá trị của hàm số: y = .
Bài 18. Tìm tập giá trị của hàm số: y =
Bài 19. Tìm tập giá trị của hàm số: y = .
Bài 20. Tìm tập giá trị của hàm số: y = .
Bảng đáp án
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
A |
D |
B |
C |
B |
C |
A |
D |
B |
D |
B |
D |
A |
A |
B |
Xem thêm các dạng bài tập Toán lớp 11 có trong đề thi THPT Quốc gia khác:
- Phương pháp Xét tính chẵn, lẻ, chu kì tuần hoàn của hàm số lượng giác
- Phương pháp tính giá trị lớn nhất – giá trị nhỏ nhất của hàm số lượng giác
- Phương pháp giải phương trình lượng giác cơ bản
- Tất tần tật về phương trình bậc nhất đối với hàm số lượng giác
- Các bài toán về phương trình bậc hai của hàm số lượng giác và cách giải
- Giải Tiếng Anh 11 Global Success
- Giải sgk Tiếng Anh 11 Smart World
- Giải sgk Tiếng Anh 11 Friends Global
- Lớp 11 - Kết nối tri thức
- Soạn văn 11 (hay nhất) - KNTT
- Soạn văn 11 (ngắn nhất) - KNTT
- Giải sgk Toán 11 - KNTT
- Giải sgk Vật Lí 11 - KNTT
- Giải sgk Hóa học 11 - KNTT
- Giải sgk Sinh học 11 - KNTT
- Giải sgk Lịch Sử 11 - KNTT
- Giải sgk Địa Lí 11 - KNTT
- Giải sgk Giáo dục KTPL 11 - KNTT
- Giải sgk Tin học 11 - KNTT
- Giải sgk Công nghệ 11 - KNTT
- Giải sgk Hoạt động trải nghiệm 11 - KNTT
- Giải sgk Giáo dục quốc phòng 11 - KNTT
- Giải sgk Âm nhạc 11 - KNTT
- Lớp 11 - Chân trời sáng tạo
- Soạn văn 11 (hay nhất) - CTST
- Soạn văn 11 (ngắn nhất) - CTST
- Giải sgk Toán 11 - CTST
- Giải sgk Vật Lí 11 - CTST
- Giải sgk Hóa học 11 - CTST
- Giải sgk Sinh học 11 - CTST
- Giải sgk Lịch Sử 11 - CTST
- Giải sgk Địa Lí 11 - CTST
- Giải sgk Giáo dục KTPL 11 - CTST
- Giải sgk Hoạt động trải nghiệm 11 - CTST
- Giải sgk Âm nhạc 11 - CTST
- Lớp 11 - Cánh diều
- Soạn văn 11 Cánh diều (hay nhất)
- Soạn văn 11 Cánh diều (ngắn nhất)
- Giải sgk Toán 11 - Cánh diều
- Giải sgk Vật Lí 11 - Cánh diều
- Giải sgk Hóa học 11 - Cánh diều
- Giải sgk Sinh học 11 - Cánh diều
- Giải sgk Lịch Sử 11 - Cánh diều
- Giải sgk Địa Lí 11 - Cánh diều
- Giải sgk Giáo dục KTPL 11 - Cánh diều
- Giải sgk Tin học 11 - Cánh diều
- Giải sgk Công nghệ 11 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 11 - Cánh diều
- Giải sgk Giáo dục quốc phòng 11 - Cánh diều
- Giải sgk Âm nhạc 11 - Cánh diều