Các dạng bài tập Hàm số lượng giác chọn lọc, có lời giải
Bài viết Hàm số lượng giác với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Hàm số lượng giác.
Bài giảng: Bài 1: Hàm số lượng giác (tiết 1) - Thầy Lê Thành Đạt (Giáo viên VietJack)
Phần Hàm số lượng giác Toán lớp 11 với các dạng bài tập chọn lọc có trong Đề thi THPT Quốc gia và trên 100 bài tập trắc nghiệm chọn lọc, có lời giải. Vào Xem chi tiết để theo dõi các dạng bài Hàm số lượng giác hay nhất tương ứng.
- Phương pháp Tìm tập xác định, tập giá trị của hàm số lượng giác
- Phương pháp Xét tính chẵn, lẻ, chu kì tuần hoàn của hàm số lượng giác
- Phương pháp tính giá trị lớn nhất – giá trị nhỏ nhất của hàm số lượng giác
- Phương pháp giải phương trình lượng giác cơ bản
- Tất tần tật về phương trình bậc nhất đối với hàm số lượng giác
- Các bài toán về phương trình bậc hai của hàm số lượng giác và cách giải
- Các bài toán về phương trình bậc nhất đối với sin và cos và cách giải
- Dạng 1: Tập xác định, tập giá trị của hàm số lượng giác Xem chi tiết
- Trắc nghiệm tập xác định, tập giá trị của hàm số lượng giác Xem chi tiết
- Dạng 2: Tính chẵn, lẻ và chu kì của hàm số lượng giác Xem chi tiết
- Trắc nghiệm tính chẵn, lẻ và chu kì của hàm số lượng giác Xem chi tiết
- Tìm tập xác định của hàm số lượng giác Xem chi tiết
- Tính đơn điệu của hàm số lượng giác Xem chi tiết
- Xác định tính chẵn, lẻ của hàm số lượng giác Xem chi tiết
- Tính chu kì tuần hoàn của hàm số lượng giác Xem chi tiết
- Giá trị lớn nhất, nhỏ nhất của hàm số lượng giác Xem chi tiết
- 60 bài tập trắc nghiệm hàm số lượng giác có đáp án (phần 1) Xem chi tiết
- 60 bài tập trắc nghiệm hàm số lượng giác có đáp án (phần 2) Xem chi tiết
Cách tìm Tập xác định, tập giá trị của hàm số lượng giác
Đáp án và hướng dẫn giải
1.
Vậy tập xác định của hàm số trên là
2.
Vậy tập xác định của hàm số trên là
3.
Vậy tập xác định của hàm số trên là
Cách xét Tính chẵn, lẻ và chu kì của hàm số lượng giác
a. Tính tuần hoàn và chu kì:
Định nghĩa: Hàm số y = f(x) có tập xác định được gọi là hàm số tuần hoàn, nếu tồn tại một số T≠0 sao cho với mọi x ∈ D ta có:
♦ (x- T) ∈ D và (x + T) ∈ D
♦ f (x + T) = f(x).
Số dương T nhỏ nhất thỏa mãn các tính chất trên được gọi là chu kì của hàm số tuần hoàn đó. Người ta chứng minh được rằng hàm số y = sinx tuần hoàn với chu kì T = 2 π ; hàm số y = cosx tuần hoàn với chu kì T = 2 π; hàm số y = tanx tuần hoàn với chu kì T = π; hàm số y = cotx tuần hoàn với chu kì T = π
Chú ý:
Hàm số y = sin(ax + b) tuần hoàn với chu kì T =
Hàm số y = cos(ax + b) tuần hoàn với chu kì T =
Hàm số y = tan(ax + b) tuần hoàn với chu kì T =
Hàm số y = cot(ax + b) tuần hoàn với chu kì T =
Hàm số y = f1(x) tuần hoàn với chu kì T1 và hàm số y = f2(x) tuần hoàn với chu kì T2 thì hàm số y = f1(x) ± f2(x) tuần hoàn với chu kì T0 là bội chung nhỏ nhất của T1 và T2 .
b. Hàm số chẵn, lẻ:
Định nghĩa:
Hàm số y = f(x) có tập xác định là D được gọi là hàm số chẵn nếu:
♦ x ∈ D và – x ∈ D.
♦ f(x) = f(-x).
Hàm số y = f(x) có tập xác định là D được gọi là hàm số lẻ nếu:
♦ x ∈ D và – x ∈ D.
♦ f(x) = - f(-x).
Bài 1: Xét tính tuần hoàn và tìm chu kì cơ sở của các hàm số sau:
Hướng dẫn giải
a. Hàm số đã cho tuần hoàn với chu kì T = 2π/2 = π.
b.
Ta có hàm số y = cosx tuần hoàn với chu kì T = 2 π , hàm số y = cos2x tuần hoàn với chu kì T = π. Vậy hàm số đã cho tuần hoàn với chu kì T = 2 π .
Bài 2: Xét tính tuần hoàn và tìm chu kì cơ sở của các hàm số sau: y = cosx + cos√3x.
Hướng dẫn giải
Giả sử hàm số đã cho tuần hoàn với chu kì T ≠ 0. Khi đó ta có:
cos(x + T) + cos[√3(x +T)] = cosx + cos√3x.
Cho x = 0. Ta có: cosT + cos√3T = 2. Vì cosx ≤ 1 với mọi x nên ta có:
mà m, k ∈ Z (vô lý). Vậy hàm số đã cho không tuần hoàn.
Cách xét Tính đơn điệu của hàm số lượng giác
+ Hàm số y= sinx đồng biến trên mỗi khoảng ((- π)/2+k2π; π/2+k2π) và nghịch biến trên mỗi khoảng (( π)/2+k2π; 3π/2+k2π)với k ∈ Z.
+ Hàm số y= cosx đồng biến trên mỗi khoảng (-π+k2π;k2π) và nghịch biến trên mỗi khoảng (k2π; π+k2π ) với k ∈ Z.
+ Hàm số y= tanx đồng biến trên mỗi khoảng ((-π)/2+kπ; π/2+kπ) với k ∈ Z.
+ Hàm số y= cotx nghịch biến trên mỗi khoảng (kπ; π+ kπ)với k ∈ Z.
Ví dụ 1: Cho hàm số y = sinx. Mệnh đề nào sau đây là đúng?
A. Hàm số đồng biến trên khoảng(π/2;π) , nghịch biến trên khoảng(π;3π/2) .
B. Hàm số đồng biến trên khoảng(-3π/2;-π/2) , nghịch biến trên khoảng(-π/2;π/2) .
C. Hàm số đồng biến trên khoảng(0;π/2) , nghịch biến trên khoảng(-π/2;0) .
D. Hàm số đồng biến trên khoảng(-π/2;π/2) , nghịch biến trên khoảng(π/2;3π/2) .
Lời giải:
Chọn D
Hàm số y= sinx đồng biến khi x thuộc góc phần tư thứ I và thứ IV;
nghịch biến khi x thuộc góc phần tư thứ II và thứ III.
Ví dụ 2: Bảng biến thiên của hàm số y=f(x)=cos2x trên đoạn [-π/2;3π/2] là:
A.
B.
C.
D.
Lời giải:
Chọn A
Ta có thể loại phương án B, C ; D luôn do tại f(0)=cos0=1 và y=f(π)=cos2π=1 .
Các bảng biến thiên B ; C ; D đều không thỏa mãn.
Xem thêm các dạng bài tập Toán lớp 11 có trong đề thi THPT Quốc gia khác:
- Tổng hợp lý thuyết chương Hàm số lượng giác - phương trình lượng giác
- Chuyên đề: Hàm số lượng giác
- Chuyên đề: Phương trình lượng giác
- Bài tập chương Hàm số lượng giác, Phương trình lượng giác (phần 1 - có đáp án)
- Bài tập chương Hàm số lượng giác, Phương trình lượng giác (phần 2 - có đáp án)
- Giải Tiếng Anh 11 Global Success
- Giải sgk Tiếng Anh 11 Smart World
- Giải sgk Tiếng Anh 11 Friends Global
- Lớp 11 - Kết nối tri thức
- Soạn văn 11 (hay nhất) - KNTT
- Soạn văn 11 (ngắn nhất) - KNTT
- Giải sgk Toán 11 - KNTT
- Giải sgk Vật Lí 11 - KNTT
- Giải sgk Hóa học 11 - KNTT
- Giải sgk Sinh học 11 - KNTT
- Giải sgk Lịch Sử 11 - KNTT
- Giải sgk Địa Lí 11 - KNTT
- Giải sgk Giáo dục KTPL 11 - KNTT
- Giải sgk Tin học 11 - KNTT
- Giải sgk Công nghệ 11 - KNTT
- Giải sgk Hoạt động trải nghiệm 11 - KNTT
- Giải sgk Giáo dục quốc phòng 11 - KNTT
- Giải sgk Âm nhạc 11 - KNTT
- Lớp 11 - Chân trời sáng tạo
- Soạn văn 11 (hay nhất) - CTST
- Soạn văn 11 (ngắn nhất) - CTST
- Giải sgk Toán 11 - CTST
- Giải sgk Vật Lí 11 - CTST
- Giải sgk Hóa học 11 - CTST
- Giải sgk Sinh học 11 - CTST
- Giải sgk Lịch Sử 11 - CTST
- Giải sgk Địa Lí 11 - CTST
- Giải sgk Giáo dục KTPL 11 - CTST
- Giải sgk Hoạt động trải nghiệm 11 - CTST
- Giải sgk Âm nhạc 11 - CTST
- Lớp 11 - Cánh diều
- Soạn văn 11 Cánh diều (hay nhất)
- Soạn văn 11 Cánh diều (ngắn nhất)
- Giải sgk Toán 11 - Cánh diều
- Giải sgk Vật Lí 11 - Cánh diều
- Giải sgk Hóa học 11 - Cánh diều
- Giải sgk Sinh học 11 - Cánh diều
- Giải sgk Lịch Sử 11 - Cánh diều
- Giải sgk Địa Lí 11 - Cánh diều
- Giải sgk Giáo dục KTPL 11 - Cánh diều
- Giải sgk Tin học 11 - Cánh diều
- Giải sgk Công nghệ 11 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 11 - Cánh diều
- Giải sgk Giáo dục quốc phòng 11 - Cánh diều
- Giải sgk Âm nhạc 11 - Cánh diều