Tìm điều kiện của tham số m để phương trình lượng giác có nghiệm- Toán lớp 11
Bài viết Tìm điều kiện của tham số m để phương trình lượng giác có nghiệm với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Tìm điều kiện của tham số m để phương trình lượng giác có nghiệm.
- Cách giải bài tập Tìm điều kiện của tham số m để phương trình lượng giác có nghiệm<
- Ví dụ minh họa bài tập Tìm điều kiện của tham số m để phương trình lượng giác có nghiệm<
- Bài tập vận dụng Tìm điều kiện của tham số m để phương trình lượng giác có nghiệm<
- Bài tập tự luyện Tìm điều kiện của tham số m để phương trình lượng giác có nghiệm<
+ Phương trình a. sinx+ b=0 hoặc a.cosx+ b=0 ( với a ≠ 0) có nghiệm nếu:
- 1 ≤ sinx( hoặc cosx) ≤ 1.
+Xét phương trình a.sin2 x + bsinx+ c= 0 hoặc a.cos2 x+ b. cosx+ c= 0 ( với a ≠ 0) :
Đặt sinx= t ( hoặc cosx = t) phương trình đã cho trở thành:
at2 + bt + c= 0 (*)
để phương trình đã cho có nghiệm nếu phương trình (*) có nghiệm t0 và -1 ≤ t0 ≤ 1
Ví dụ 1. Cho phương trình 2sinx+ cos900 = m. Tìm điều kiện của m để phương trình đã cho có nghiệm?
A. - 2 ≤ m ≤ 2
B. - 1 ≤ m ≤ 1
C. - 4 ≤ m ≤ 4
D. Đáp án khác
Lời giải
Ta có: 2sinx+ cos900= m
⇒ 2sinx + 0= m
⇒ sinx= m/2 (*)
Với mọi x ta luôn có: - 1 ≤ sinx ≤ 1
⇒ để phương trình đã cho có nghiệm khi và chỉ khi:
- 1 ≤ m/2 ≤ 1 ⇒ - 2 ≤ m ≤ 2
Chọn A.
Ví dụ 2. Có bao nhiêu giá trị nguyên của m để phương trình: có nghiệm
A. 2
B.4
C. 3
D.1
Lơì giải
Ta có:
⇒ sinx - 2sinx = m
⇒ - sinx = m ⇒ sinx= - m
Với mọi x ta luôn có: - 1 ≤ sinx ≤ 1
⇒ để phương trình đã cho có nghiệm khi và chỉ khi:
- 1 ≤ -m ≤ 1 ⇒ - 1 ≤ m ≤ 1
⇒ m∈{ -1;0;1}
Chọn C.
Ví dụ 3. Tìm tất cả giá trị của m để phương trình sin2x -2(m-1)sinxcosx-(m-1)cos2x=m có nghiệm?
A.0≤m≤1
B.m > 1
C.0 < m < 1
D.m≤0
Lời giải
Ta có: sin2 x- 2(m -1) sinx. cosx – ( m – 1) cos2 x= m
Ta có:
⇒ 1- cos2x -2 (m- 1) .sin2x- ( m- 1) . ( 1 + cos2x) = 2m
⇒ 1- cos2x -2(m-1)sin2x – m+ 1 – (m-1).cos2x – 2m= 0
⇒ -2(m -1) sin2x – mcos2x= 3m - 2
Phương trình có nghiệm
Ta có:
Chọn A.
Ví dụ 4. Để phương trình: sin2 x+2(m+1).sinx – 3m(m-2)= 0 có nghiệm, các giá trị thích hợp của tham số m là:
A. .
B. .
C. .
D. .
Lời giải
Đặt t = sinx.
Điều kiện .
Phương trình trở thành: t2 + 2(m+1).t – 3m(m- 2)= 0 (1).
Đặt f(t) = t2 + 2(m+1)t – 3m(m- 2).
Phương trình đã cho có nghiệm thuộc đoạn [-1;1] khi phương trình (1) có một nghiệm thuộc [-1;1] hoặc có hai nghiệm thuộc [-1;1]
Chọn B.
Ví dụ 5: Để phương trình có nghiệm, điều kiện thích hợp cho tham số là:
A. .
B. .
C. .
D. .
Lời giải
Phương trình (1) trở thành 3t2+ 4at – 4= 0 (2).
Để phương trình (1) có nghiệm thì phương trình (2) phải có nghiệm trong đoạn .
Xét phương trình (2), ta có:
nên (2) luôn có hai nghiệm phân biệt trái dấu.
Chọn D.
Ví dụ 6: Cho phương trình cos6 x + sin6 x= m. Tìm điều kiện của m để phương trình đã cho có nghiệm?
A. 1/4 ≤ m ≤ 1
B. 1/2 ≤ m ≤ 1
C. 1/2 ≤ m ≤ 2
D. Đáp án khác
Lời giải
Ta có: cos6 x + sin6 x= m
⇒ (cos2 x+ sin2 x) . (cos4 x – cos2x. sin2 x+ sin4 x) =m
⇒ 1.[ (cos2x+ sin2 x)2 – 3.cos2 x. sin2 x= m
Với mõi ta a luôn có: - 1 ≤ sin2x ≤ 1 nên 0 ≤ sin2 2x ≤ 1
Do đó; để phương trình đã cho co nghiệm khi và chỉ khi phương trình (*) có nghiệm
Chọn B.
Ví dụ 7. Cho phương trình: 4(sin4 x + cos4 x ) -8(sin6 x + cos6 x) -4sin2 4x = m trong đó m là tham số. Để phương trình là vô nghiệm, thì các giá trị thích hợp của m là:
A. .
B.
C.
D.
Lời giải
Ta có:
+ Ta tìm điều kiện của m để phương trình có nghiệm. Rồi từ đó suy ra các giá trị của m để phương trình đã cho vô nghiệm.
(1) có nghiệm thì (2) phải có nghiệm thoả t0 thuộc [-1;1] .
Chọn D.
Ví dụ 8. Cho phương trình cos(x-300) + sin( x+ 600)= m. Tìm điều kiện của m để phương trình đã cho có nghiệm?
A.0 ≤ m ≤ 1
B. -1 ≤ m ≤ 2
C. - 1 ≤ m ≤ 1
D. Đáp án khác
Lời giải
Ta có: cos(x- 300) - sin(x+ 600) + sinx = m
⇒ cosx . cos300+ sinx. sin300 - sinx. cos600 - cosx. sin600 + sinx= m
⇒ sinx= m (*)
Với mọi x ta luôn có: - 1 ≤ sinx ≤ 1 nên để phương trình đã cho có nghiệm khi và chỉ khi phương trình (*) có nghiệm
⇒ - 1 ≤ m ≤ 1
Chọn C.
Câu 1:Cho phương trình: cosx. sinx – 2m– 2sinx+ m.cosx= 0.Tìm điều kiện của m để phương trình đã cho có nghiệm.
A.0 ≤ m ≤ 1
B. -1 ≤ m ≤ 2
C. - 2 ≤ m ≤ 1
D. -1 ≤ m ≤ 1
Lời giải:
Ta có: cosx.sinx – 2m -2sinx + m. cosx = 0
⇒ (cosx. sinx -2sinx) + ( m. cosx – 2m) = 0
⇒ sinx( cosx- 2) + m( cosx- 2) = 0
⇒ ( sinx + m) . (cosx- 2) = 0
Để phương trình đã cho có nghiệm khi và chỉ khi phương trình sinx= - m có nghiệm
⇒ - 1 ≤ m ≤ 1
Chọn D.
Câu 2:Cho phương trình cos2x+ 4cosx+ m= 0. Tìm điều kiện của m để phương trình đã cho có nghiệm?
A. -7 ≤ m ≤ 1
B. -5 ≤ m ≤ 2
C. – 6 ≤ m ≤ 2
D. - 4 ≤ m ≤ 2
Lời giải:
Ta có: cos2x + 4cosx + m=0
⇒ 2cos2 x – 1+ 4cosx+ m= 0
⇒ 2cos2 x+ 4cosx + 2 + m-3= 0
⇒ 2(cosx+ 1)2 + m- 1= 0
⇒ 2(cosx+1)2 = 1- m
⇒ (cosx+ 1)2 = (1-m)/2 (*)
Với mọi x ta luôn có: - 1 ≤ cosx ≤ 1 ⇒ 0 ≤ cosx+1 ≤ 2
⇒ 0 ≤ (cosx+1)2 ≤ 4
Do đó để phương trình đã cho có nghiệm khi và chỉ khi phương trình (*) có nghiệm
⇒ 0 ≤ (1-m)/2 ≤ 4 ⇒ 0 ≤ 1-m ≤ 8
⇒ - 7 ≤ m ≤ 1
Chọn A.
Câu 3:Cho phương trình cos( x+ y) – cos( x-y) = m. Tìm điều kiện của m để phương trình đã cho có nghiệm.
A. -3 ≤ m ≤ 1
B. -2 ≤ m ≤ 2
C. – 3 ≤ m ≤ 1
D. - 4 ≤ m ≤ 2
Lời giải:
Ta có: cos(x+ y) – cos (x- y) = m
⇔ cosx . cosy – sinx. siny – ( cosx. cosy + sinx. sin y)= m
⇔ -2sinx. sin y = m (*)
Với mọi x; y ta có; - 1 ≤ sin〖x ≤ 1 và-1 ≤ siny ≤ 1
⇒ - 1 ≤ sin〖x.siny ≤ 1 ⇔ - 2 ≤ -2.sinx.siny ≤ 2
Do đó; để phương trình đã cho có nghiệm khi và chỉ khi phương trình ( *)có nghiệm
⇔ - 2 ≤ m ≤ 2
Chọn B.
Câu 4:Cho phương trình sin6 x- cos6 x + cos2x= m. Biết rằng khi m thuộc đoạn [a; b] phương trình đã cho có nghiệm. Tính a+ b
A. – 2
B. -1
C. 0
D. 1
Lời giải:
Ta có:sin6 x- cos6 x + cos2x= m
⇒ (sin2 x- cossin2 x) . ( sinsin4 x+ sin2 x. cos2 x+ cossin4x)+ cos2x = m
⇒ - cos2x. [ (sinsin2 x+ cossin2 x)sin2 – sinsin2 x.cossin2 x] + cos2x= m
Chon C.
Câu 5:Cho phương trình: , trong đó m là tham số. Để phương trình có nghiệm, các giá trị thích hợp của m là
A.
B.
C.
D.
Lời giải:
Điều kiện: cos2x #0
Ta có: sin6 x+ cos6 x= (sin2 x+ cos2x). (sin4 x- sin2x.cos2x + cos4 x)
= 1. [ (sin2 x+ cos2 x)2 – 3sin2 x.cos2 x] = 1- 3/4 sin2 2x
Khi đó phưởng trình đã cho trở thành:
Chọn C
Câu 6:Cho phương trình cos( 900- x)+ sin( 1800- x) + sinx= 3m. Có bao nhiêu giá trị nguyên của tham số m để phương trình đã cho có nghiệm
A. 3
B. 4
C. 2
D .5
Lời giải:
Ta có: cos( 900- x) + sin( 1800 – x) + sinx= 3m
⇒ sinx + sin x + sinx = 3m
⇒ 3sinx= 3m ⇒ sin x= m (*)
Với mọi x ta luôn có: - 1 ≤ sinx ≤ 1 nên tử (*) suy ra phương trình đã cho có nghiệm
⇒ - 1 ≤ m ≤ 1
⇒ Có ba giá nguyên của m là – 1; 0; 1 để phương trình đã cho có nghiệm.
Chọn A.
Câu 7:Cho phương trình: sin2 x+ (m-1) sinx – m = 0. Tìm điều kiện của tham số m để phương trình trên có nghiệm.
A.m > 2
B. m < 1
C. 1 < m < 10
D.Phương trình luôn có nghiệm với mọi m
Lời giải:
Ta có; sin2 x+ (m-1)sinx – m= 0
⇒ sin2 x – sinx + m.sinx- m= 0
⇒ sinx(sinx -1) + m.(sinx -1) = 0
⇒ (sinx – 1).(sinx+ m)= 0
Vì phương trình sinx= 1 có nghiệm là x= π/2+k2π
⇒ Phương trình đã cho luôn nhận x= π/2+k2π làm nghiệm
⇒ Với mọi giá trị của m thì phương trình đã cho luôn có nghiệm
Chọn D.
Câu 8:Cho phương trình sin2x+ 2sin2 x+ 4cos2 x=m. Tìm điều kiện của tham số m để phương trình đã cho có nghiệm?
A. -3√2 ≤ m ≤ 3√2
B. 3- √2 ≤ m ≤ √2+3
C. 2- √2 ≤ m ≤ √2+2
D. -2√2 ≤ m ≤ 2√2
Lời giải:
Ta có: sin2x+ 2sin2 x+ 4cos2 x= m
⇒ sin2x + 2( sin2 x+ cos2 x) + 2cos2 x = m
⇒ sin2x+ 2.1+ cos2x+ 1 = m
⇒ sin2x + cos2x + 3 = m
⇒ sin2x+ cos2x = m – 3
⇒ √2 sin( 2x+ π/4)=m-3
Với mọi x ta luôn có - 1 ≤ sin( 2x+ π/4) ≤ 1
⇒ - √2 ≤ √2 sin(2x+ π/4) ≤ √2
⇒ - √2 ≤ m-3 ≤ √2
⇒ 3- √2 ≤ m ≤ √2+3
Chọn B.
Câu 9:Để phương trình có nghiệm, tham số m phải thỏa mãn điều kiện:
A. -1 ≤ m < -1/4
B. -2 ≤ m ≤ -1
C.0 ≤ m ≤ 2
D.(- 1)/4 ≤ m ≤ 0
Lời giải:
Chọn A.
Câu 10:Để phương trình: có nghiệm, tham số a phải thỏa điều kiện:
A.- 1 ≤ a ≤ 0 .
B. - 2 ≤ a ≤ 2.
C. - 1/2 ≤ m ≤ 1/4.
D. - 2 ≤ m ≤ 0
Lời giải:
Chọn B.
Bài 1. Tìm điều kiện để phương trình (sinx + cosx) + m – 2 = 0 có nghiệm.
Bài 2. Có bao nhiêu giá trị nguyên của tham số m để phương trình dưới đây có nghiệm thực?
sin2x – cos2x + .
Bài 3. Để phương trình
có nghiệm, tham số m phải thỏa mãn điều kiện gì?
Bài 4. Cho phương trình: cosx.sinx – 2m – 2sinx + m.cosx = 0. Tìm điều kiện của m để phương trình đã cho có nghiệm.
Bài 5. Tìm điều kiện cần và đủ của a, b, c để phương trình asinx + bcosx = c có nghiệm.
Xem thêm các dạng bài tập Toán lớp 11 có trong đề thi THPT Quốc gia khác:
- Điều kiện để phương trình bậc nhất đối với sinx và cosx có nghiệm
- Giải phương trình bậc nhất đối với sinx và cosx
- Phương trình quy về phương trình bậc nhất đối với sinx và cosx
- Phương trình thuần nhất bậc 2 đối với sinx và cosx
- Phương trình đối xứng, phản đối xứng đối với sinx và cosx
- Phương trình lượng giác đưa về dạng tích
- Phương trình lượng giác không mẫu mực
- Tìm số nghiệm của phương trình lượng giác trong khoảng, đoạn
- Giải Tiếng Anh 11 Global Success
- Giải sgk Tiếng Anh 11 Smart World
- Giải sgk Tiếng Anh 11 Friends Global
- Lớp 11 - Kết nối tri thức
- Soạn văn 11 (hay nhất) - KNTT
- Soạn văn 11 (ngắn nhất) - KNTT
- Giải sgk Toán 11 - KNTT
- Giải sgk Vật Lí 11 - KNTT
- Giải sgk Hóa học 11 - KNTT
- Giải sgk Sinh học 11 - KNTT
- Giải sgk Lịch Sử 11 - KNTT
- Giải sgk Địa Lí 11 - KNTT
- Giải sgk Giáo dục KTPL 11 - KNTT
- Giải sgk Tin học 11 - KNTT
- Giải sgk Công nghệ 11 - KNTT
- Giải sgk Hoạt động trải nghiệm 11 - KNTT
- Giải sgk Giáo dục quốc phòng 11 - KNTT
- Giải sgk Âm nhạc 11 - KNTT
- Lớp 11 - Chân trời sáng tạo
- Soạn văn 11 (hay nhất) - CTST
- Soạn văn 11 (ngắn nhất) - CTST
- Giải sgk Toán 11 - CTST
- Giải sgk Vật Lí 11 - CTST
- Giải sgk Hóa học 11 - CTST
- Giải sgk Sinh học 11 - CTST
- Giải sgk Lịch Sử 11 - CTST
- Giải sgk Địa Lí 11 - CTST
- Giải sgk Giáo dục KTPL 11 - CTST
- Giải sgk Hoạt động trải nghiệm 11 - CTST
- Giải sgk Âm nhạc 11 - CTST
- Lớp 11 - Cánh diều
- Soạn văn 11 Cánh diều (hay nhất)
- Soạn văn 11 Cánh diều (ngắn nhất)
- Giải sgk Toán 11 - Cánh diều
- Giải sgk Vật Lí 11 - Cánh diều
- Giải sgk Hóa học 11 - Cánh diều
- Giải sgk Sinh học 11 - Cánh diều
- Giải sgk Lịch Sử 11 - Cánh diều
- Giải sgk Địa Lí 11 - Cánh diều
- Giải sgk Giáo dục KTPL 11 - Cánh diều
- Giải sgk Tin học 11 - Cánh diều
- Giải sgk Công nghệ 11 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 11 - Cánh diều
- Giải sgk Giáo dục quốc phòng 11 - Cánh diều
- Giải sgk Âm nhạc 11 - Cánh diều