Công thức Toán 9 Học kì 1 chi tiết nhất (mới)
Việc nhớ chính xác một công thức Toán 9 trong hàng trăm công thức không phải là việc dễ dàng, với mục đích giúp học sinh dễ dàng hơn trong việc nhớ Công thức, VietJack biên soạn bản tóm tắt Công thức Toán 9 Học kì 1 chi tiết nhất (mới). Hi vọng loạt bài này sẽ như là cuốn sổ tay công thức giúp bạn học tốt môn Toán lớp 9 hơn.
Chủ đề: Phương trình và bất phương trình bậc nhất
Chủ đề: Căn bậc hai - Căn bậc ba
Chủ đề: Hệ thức lượng trong tam giác vuông
Công thức liên hệ giữa đường nối tâm và tâm của hai đường tròn
Công thức liên hệ giữa dây và khoảng cách từ tâm đến dây hay, chi tiết
Vị trí tương đối của đường thẳng và đường tròn đầy đủ, chi tiết
Lưu trữ: Công thức Toán 9 Học kì 1 (sách cũ)
I. Căn bậc hai
1. Một số công thức cần nhớ
2. Điều kiện để căn thức có nghĩa
3. Điều kiện có nghĩa của một số biểu thức
4. Tính chất của căn bậc hai
Với hai số a và b không âm, ta có:
5. Các công thức biến đổi căn thức
với Ai ≥ 0 (1 ≤ i ≤ n)
+) Đưa thừa số A2 ra ngoài dấu căn bậc hai ta được |A|.
+) Đưa thừa số vào trong dấu căn bậc hai:
+) Khử mẫu của biểu thức dưới dấu căn bậc hai:
Ta nhân mẫu số với thừa số phụ thích hợp để mẫu số là một bình phương
(với B ≠ 0, A.B ≥ 0)
+) Trục căn thức ở mẫu số:
Dạng 1: Mẫu là biểu thức dạng tích các căn thức và các số, ta nhân tử và mẫu với căn thức.
Dạng 2: Mẫu là biểu thức dạng tổng có căn thức, ta nhân tử và mẫu với biểu thức liên hợp của mẫu.
6. Phương trình chứa căn thức bậc hai
II. Căn bậc ba
1. Hệ thức lượng trong tam giác vuông.
Cho tam giác ABC có đường cao AH
Đặt BC = a; AC = b; AB = c; AH = h; CH = b'; BH = c'
BH, CH lần lượt là hình chiếu của AB và AC lên BC.
Ta có các hệ thức sau:
+) b2 = ab' ; c2 = ac'
+) h2 = b'c'
+) ah = bc
+) a2 = b2 + c2 (Định lý Py-ta-go)
+)
2. Tỉ số lượng giác của góc nhọn
a) Định nghĩa
b) Tính chất
+) Cho hai góc α và β phụ nhau. Khi đó
● sin = cos; ● tan = cot;
● cos = sin ; ● cot = tan.
+) Cho góc nhọn α. Ta có
d) Tỉ số lượng giác của các góc đặc biệt
3. Hệ thức về cạnh và góc trong tam giác vuông
● b = asinB = acosC
● b = ctanB = ccotC
● c = asinC = acosB
● c = btanC = bcot B
Xem thêm tổng hợp công thức môn Toán lớp 9 đầy đủ và chi tiết khác:
- Đề thi lớp 1 (các môn học)
- Đề thi lớp 2 (các môn học)
- Đề thi lớp 3 (các môn học)
- Đề thi lớp 4 (các môn học)
- Đề thi lớp 5 (các môn học)
- Đề thi lớp 6 (các môn học)
- Đề thi lớp 7 (các môn học)
- Đề thi lớp 8 (các môn học)
- Đề thi lớp 9 (các môn học)
- Đề thi lớp 10 (các môn học)
- Đề thi lớp 11 (các môn học)
- Đề thi lớp 12 (các môn học)
- Giáo án lớp 1 (các môn học)
- Giáo án lớp 2 (các môn học)
- Giáo án lớp 3 (các môn học)
- Giáo án lớp 4 (các môn học)
- Giáo án lớp 5 (các môn học)
- Giáo án lớp 6 (các môn học)
- Giáo án lớp 7 (các môn học)
- Giáo án lớp 8 (các môn học)
- Giáo án lớp 9 (các môn học)
- Giáo án lớp 10 (các môn học)
- Giáo án lớp 11 (các môn học)
- Giáo án lớp 12 (các môn học)