Công thức Toán lớp 9 Chương 3 Hình học chi tiết nhất
Việc nhớ chính xác một công thức Toán lớp 9 trong hàng trăm công thức không phải là việc dễ dàng, với mục đích giúp học sinh dễ dàng hơn trong việc nhớ Công thức, VietJack biên soạn bản tóm tắt Công thức Toán lớp 9 Chương 3 Hình học chi tiết nhất. Hi vọng loạt bài này sẽ như là cuốn sổ tay công thức giúp bạn học tốt môn Toán lớp 9 hơn.
1. Góc ở tâm. Số đo cung
Định lí: Nếu C là một điểm nằm trên cung AB thì:
2. Liên hệ giữa cung và dây
Định lí 1: Với hai cung nhỏ trong một đường tròn hay trong hai đường tròn bằng nhau:
- Hai cung bằng nhau căng hai dây bằng nhau
- Hai dây bằng nhau căng hai cung bằng nhau
Định lí 2: Với hai cung nhỏ trong một đường tròn hay trong hai đường tròn bằng nhau:
- Cung lớn hơn căng dây lớn hơn
- Dây lớn hơn căng cung lớn hơn
3. Góc nội tiếp
- Trong một đường tròn, số đo của góc nội tiếp bằng nửa số đo của cung bị chắn:
Hệ quả: Trong một đường tròn:
- Các góc nội tiếp bằng nhau chắn các cung bằng nhau.
- Các góc nội tiếp cùng chắn một cung hoặc chắn các cung bằng nhau thì bằng nhau.
- Góc nội tiếp (nhỏ hơn hoặc bằng 900) có số đo bằng nửa số đo của góc ở tâm cùng chắn một cung.
- Góc nội tiếp chắn nửa đường tròn là góc vuông.
4. Góc tạo bởi tia tiếp tuyến và dây cung
Số đo của góc tạo bởi tia tiếp tuyến và dây cung bằng nửa số đo của cung bị chắn.
5. Góc có đỉnh ở bên trong đường tròn là góc có đỉnh nằm bên trong đường tròn.
Số đo của góc có đỉnh ở bên trong đường tròn bằng nửa tổng số đo hai cung bị chắn.
6. Góc có đỉnh ở bên ngoài đường tròn:
Số đo của góc có đỉnh ở bên ngoài đường tròn bằng nửa hiệu số đo hai cung bị chắn.
7. Tứ giác nội tiếp
- Trong một tứ giác nội tiếp, tổng số đo hai góc đối diện bằng 1800.
+) Dấu hiệu nhận biết tứ giác nội tiếp:
- Tứ giác có tổng hai góc đối diện bằng 1800.
- Tứ giác có góc ngoài tại một đỉnh bằng góc trong của đỉnh đối diện
- Tứ giác có bốn đỉnh cách đều một điểm (mà ta có thể xác định được). Điểm đó là tâm của đường tròn ngoại tiếp tứ giác
- Tứ giác có hai đỉnh kề nhau cùng nhìn cạnh chứa hai đỉnh còn lại dưới một góc bằng nhau.
8. Các công thức
- Công thức tính độ dài đường tròn: C = 2πR = πd
- Công thức tính độ dài cung tròn:
Trong đó: R là bán kính, l là độ dài của một cung n0
Xem thêm tổng hợp công thức môn Toán lớp 9 đầy đủ và chi tiết khác:
- Đề thi lớp 1 (các môn học)
- Đề thi lớp 2 (các môn học)
- Đề thi lớp 3 (các môn học)
- Đề thi lớp 4 (các môn học)
- Đề thi lớp 5 (các môn học)
- Đề thi lớp 6 (các môn học)
- Đề thi lớp 7 (các môn học)
- Đề thi lớp 8 (các môn học)
- Đề thi lớp 9 (các môn học)
- Đề thi lớp 10 (các môn học)
- Đề thi lớp 11 (các môn học)
- Đề thi lớp 12 (các môn học)
- Giáo án lớp 1 (các môn học)
- Giáo án lớp 2 (các môn học)
- Giáo án lớp 3 (các môn học)
- Giáo án lớp 4 (các môn học)
- Giáo án lớp 5 (các môn học)
- Giáo án lớp 6 (các môn học)
- Giáo án lớp 7 (các môn học)
- Giáo án lớp 8 (các môn học)
- Giáo án lớp 9 (các môn học)
- Giáo án lớp 10 (các môn học)
- Giáo án lớp 11 (các môn học)
- Giáo án lớp 12 (các môn học)