Công thức Toán 9 Hình học mới, chi tiết nhất
Tóm tắt Công thức Toán 9 Hình học chi tiết nhất chương trình sách mới Kết nối tri thức, Chân trời sáng tạo, Cánh diều. Hi vọng loạt bài này sẽ như là cuốn sổ tay công thức giúp bạn học tốt môn Toán lớp 9 hơn.
Chủ đề: Hệ thức lượng trong tam giác vuông
Công thức liên hệ giữa đường nối tâm và tâm của hai đường tròn
Công thức liên hệ giữa dây và khoảng cách từ tâm đến dây hay, chi tiết
Vị trí tương đối của đường thẳng và đường tròn đầy đủ, chi tiết
Công thức tính bán kính đường tròn ngoại tiếp tam giác vuông
Công thức tính bán kính đường tròn ngoại tiếp và bán kính đường tròn nội tiếp của tam giác đều
Công thức tính bán kính đường tròn ngoại tiếp của hình chữ nhật và hình vuông
Công thức tìm góc quay của phép quay giữ nguyên hình đa giác đều
Công thức tính diện tích xung quanh và thể tích của hình trụ
Công thức tính diện tích xung quanh và thể tích của hình nón
Lưu trữ: Công thức Hình học 9 (sách cũ)
1. Hệ thức lượng trong tam giác vuông.
Cho tam giác ABC có đường cao AH
Đặt BC = a; AC = b; AB = c; AH = h; CH = b'; BH = c'
BH, CH lần lượt là hình chiếu của AB và AC lên BC.
Ta có các hệ thức sau:
+) b2 = ab' ; c2 = ac'
+) h2 = b'c'
+) ah = bc
+) a2 = b2 + c2 (Định lý Py-ta-go)
+)
2. Tỉ số lượng giác của góc nhọn
a) Định nghĩa
b) Tính chất
+) Cho hai góc α và β phụ nhau. Khi đó
● sin = cos; ● tan = cot;
● cos = sin ; ● cot = tan.
+) Cho góc nhọn α. Ta có
d) Tỉ số lượng giác của các góc đặc biệt
3. Hệ thức về cạnh và góc trong tam giác vuông
● b = asinB = acosC
● b = ctanB = ccotC
● c = asinC = acosB
● c = btanC = bcot B
1. Sự xác định đường tròn.
- Một đường tròn được xác định khi biết tâm O và bán kính R của đường tròn đó (kí hiệu (O;R)), hoặc khi biết một đoạn thẳng là đường kính của đường tròn đó
- Có vô số đường tròn đi qua hai điểm. Tâm của chúng nằm trên đường trung trực của đoạn thẳng nối hai điểm đó.
- Qua ba điểm không thẳng hàng, ta vẽ được một và chỉ một đường tròn.
Chú ý: Không vẽ được đường tròn nào đi qua ba điểm thẳng hàng.
- Đường tròn đi qua ba đỉnh của tam giác gọi là đường tròn ngoại tiếp tam giác, tam giác gọi là tam giác nội tiếp đường tròn.
2. Tính chất đối xứng của đường tròn.
+) Đường tròn là hình có tâm đối xứng. Tâm của đường tròn là tâm đối xứng của đường tròn đó.
- Đường tròn là hình có trục đối xứng. Bất kì đường kính nào cũng là trục đối xứng của đường tròn
+) Tâm của đường tròn ngoại tiếp tam giác vuông là trung điểm của cạnh huyền
- Nếu một tam giác có một cạnh là đường kính của đường tròn ngoại tiếp thì tam giác đó là tam giác vuông.
3. Quan hệ giữa đường kính và dây của đường tròn
- Trong các dây của một đường tròn, dây lớn nhất là đường kính.
- Trong một đường tròn, đường kính vuông góc với một dây thì đi qua trung điểm của dây ấy.
- Trong một đường tròn, đường kính đi qua trung điểm của một dây không đi qua tâm thì vuông góc với dây ấy
4. Liên hệ giữa dây và khoảng cách từ tâm đến dây
Định lí 1: Trong một đường tròn:
- Hai dây bằng nhau thì cách đều tâm
- Hai dây cách đều tâm thì bằng nhau
AB = CD ⇔ OH = OK
Định lí 2: Trong hai dây của một đường tròn
- Dây nào lớn hơn thì dây đó gần tâm hơn
- Dây nào gần tâm hơn thì dây đó lớn hơn
MN > CD ⇔ OI < OK
5. Vị trí tương đối của đường thẳng và đường tròn: d là khoảng cách từ tâmcủa đường tròn đến đường thẳng, R là bán kính
Vị trí tương đối của đường thẳng và đường tròn |
Số điểm chung |
Hệ thức giữa d và R |
---|---|---|
Đường thẳng và đường tròn cắt nhau |
2 |
d < R |
Đường thẳng và đường tròn tiếp xúc nhau |
1 |
d = R |
Đường thẳng và đường tròn không giao nhau |
0 |
d > R |
☞ Định lí: Nếu một đường thẳng alà tiếp tuyến của một đường tròn (O) thì nó vuông góc với bán kính đi qua tiếp điểm.
Đường thẳng a là tiếp tuyến của (O) ⇔ a ⊥OI
6. Tính chất của hai tiếp tuyến cắt nhau
Định lí: Nếu hai tiếp tuyến của một đường tròn cắt nhau tại một điểm thì:
- Điểm đó cách đều hai tiếp điểm
- Tia kẻ từ điểm đó đi qua tâm là tia phân giác của góc tạo bởi hai tiếp tuyến
- Tia kẻ từ tâm đi qua điểm đó là tia phân giác của góc tạo bởi hai bán kính đi qua các tiếp điểm.
7. Vị trí tương đối của hai đường tròn
Cho (O ; R) và (O’; r) với R >r
VỊ TRÍ |
HÌNH |
SỐ ĐIỂM CHUNG |
HỆ THỨC |
---|---|---|---|
Cắt nhau |
2 A, B được gọi là 2 giao điểm |
R – r < OO’ < R + r |
|
Tiếp xúc ngoài |
1 A gọi là tiếp điểm |
OO’ = R + r |
|
Tiếp xúc trong |
1 A gọi là tiếp điểm |
OO’ = R – r > 0 |
|
Không giao nhau ((O) và (O’) ở ngoài nhau) |
0 |
OO’ > R + r |
|
Không giao nhau ((O) đựng (O’) ) |
0 |
OO’ < R – r |
Định lí: Nếu hai đường tròn cắt nhau thì hai giao điểm đối xứng với nhau qua đường nối tâm, tức là đường nối tâm là đường trung trực của dây chung.
{A;B} = (O) ∩ (O') ⇔ OO' là trung trực của AB
+) Nếu hai đường tròn tiếp xúc nhau thì tiếp điểm nằm trên đường nối tâm.
(O) tiếp xúc (O') tại A ⇔ A ∈ OO'
- Tiếp tuyến chung của hai đường tròn: Tiếp tuyến chung của hai đường tròn là đường thẳng tiếp xúc với cả hai đường tròn đó.
Xem thêm tổng hợp công thức môn Toán lớp 9 đầy đủ và chi tiết khác:
- Đề thi lớp 1 (các môn học)
- Đề thi lớp 2 (các môn học)
- Đề thi lớp 3 (các môn học)
- Đề thi lớp 4 (các môn học)
- Đề thi lớp 5 (các môn học)
- Đề thi lớp 6 (các môn học)
- Đề thi lớp 7 (các môn học)
- Đề thi lớp 8 (các môn học)
- Đề thi lớp 9 (các môn học)
- Đề thi lớp 10 (các môn học)
- Đề thi lớp 11 (các môn học)
- Đề thi lớp 12 (các môn học)
- Giáo án lớp 1 (các môn học)
- Giáo án lớp 2 (các môn học)
- Giáo án lớp 3 (các môn học)
- Giáo án lớp 4 (các môn học)
- Giáo án lớp 5 (các môn học)
- Giáo án lớp 6 (các môn học)
- Giáo án lớp 7 (các môn học)
- Giáo án lớp 8 (các môn học)
- Giáo án lớp 9 (các môn học)
- Giáo án lớp 10 (các môn học)
- Giáo án lớp 11 (các môn học)
- Giáo án lớp 12 (các môn học)