Tóm tắt Lý thuyết Toán 10 (hay, chi tiết) | Kiến thức trọng tâm Toán 10 Tập 1, Tập 2

Tài liệu tổng hợp lý thuyết Toán 10 Kết nối tri thức, Cánh diều, Chân trời sáng tạo đầy đủ Tập 1, Tập 2 giúp học sinh lớp 10 dễ dàng ôn luyện và nắm vững kiến thức trọng tâm môn Toán lớp 10 Học kì 1, Học kì 2, từ đó đạt điểm cao trong các bài thi môn Toán lớp 10.

Mục lục Lý thuyết Toán lớp 10 Kết nối tri thức


Mục lục Lý thuyết Toán lớp 10 Cánh diều


Mục lục Lý thuyết Toán lớp 10 Chân trời sáng tạo

Cách xem online sách lớp 10 mới:




Lưu trữ: Lý thuyết Toán 10 (sách cũ)




Lý thuyết Mệnh đề

I. MỆNH ĐỀ

Mỗi mệnh đề phải đúng hoặc sai.

Mỗi mệnh đề không thể vừa đúng, vừa sai.

II. PHỦ ĐỊNH CỦA MỘT MỆNH ĐỀ

Kí hiệu mệnh phủ định của mệnh đề P là Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án ta có

- Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án đúng khi P sai.

- Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án sai khi P đúng.

III. MỆNH ĐỀ KÉO THEO

Mệnh đề “Nếu P thì Q” được gọi là mệnh đề kéo theo, và kí hiệu là P => Q.

Mệnh đề P => Q còn được phát biểu là “P kéo theo Q” hoặc “Từ P suy ra Q”.

Mệnh đề P => Q chỉ sai khi P đúng và Q sai.

Như vậy, ta chỉ xét tính đúng sai của mệnh đề P => Q khi P đúng. Khi đó, nếu Q đúng thì P => Q đúng, nếu Q sai thì P => Q sai.

Các định lí, toán học là những mệnh đề đúng và thường có dạng P => Q.

Khi đó ta nói P là giả thiết, Q là kết luận của định lí, hoặc P là điều kiện đủ để có Q hoặc Q là điều kiện cần để có P.

IV. MỆNH ĐỀ ĐẢO – HAI MỆNH ĐỀ TƯƠNG ĐƯƠNG

Mệnh đề Q => P được gọi là mệnh đề đảo của mệnh đề P => Q

Mệnh đề đảo của một mệnh đề đúng không nhất thiết là đúng.

Nếu cả hai mệnh đề P => Q và Q => P đều đúng ta nói P và Q là hai mệnh đề tương đương. Khi đó ta có kí hiệu P  Q và đọc là P tương đương Q, hoặc P là điều kiện cần và đủ để có Q, hoặc P khi và chỉ khi Q.

V. KÍ HIỆU ∀ VÀ ∃

Ví dụ: Câu “Bình phương của mọi số thực đều lớn hơn hoặc bằng 0” là một mệnh đề. Có thể viết mệnh đề này như sau

∀x ∈ R : x2 ≥ 0 hay x2 ≥ 0, ∀x ∈ R.

Kí hiệu ∀ đọc là “với mọi”.

Ví dụ: Câu “Có một số nguyên nhỏ hơn 0” là một mệnh đề

Có thể viết mệnh đề này như sau

∃n ∈ Z : n < 0.

Kí hiệu ∃ đọc là “có một” (tồn tại một) hay “có ít nhất một” (tồn tại ít nhất một).

Phủ định của mệnh đề “∀x ∈ X, P(x) ” là mệnh đề “ ∃x ∈ X, Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án"

Phủ định của mệnh đề “∃x ∈ X, P(x)” là mệnh đề “ ∀ x ∈ X, Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án"

Lý thuyết Tập hợp

1. Tập hợp và phần tử

Tập hợp (còn gọi là tập) là một khái niệm cơ bản của toán học, không định nghĩa.

Giả sử đã cho tập hợp A.

Để chỉ a là một phần tử của tập hợp A, ta viết a ∈ A (đọc là a thuộc A).

Để chỉ a không phải là một phần tử của tập hợp A, ta viết a ∈ A (đọc là P không thuộc A).

2. Cách xác định tập hợp

Một tập hợp có thể được xác định bằng cách chỉ ra tính chất đặc trưng cho các phần tử của nó.

Vậy ta có thể xác định một tập hợp bằng một trong hai cách sau

Liệt kê các phần tử của nó.

Chỉ ra tính chất đặc trưng cho các phần tử của nó.

Người ta thường minh họa tập hợp bằng một hình phẳng được bao quanh bởi một đường kín, gọi là biểu đồ Ven.

3. Tập hợp rỗng

Tập hợp rỗng, kí hiệu là ø, là tập hợp không chứa phần tử nào.

Nếu A không phải là tập hợp rỗng thì A chứa ít nhất một phần tử.

A ≠ ø <=> ∃x : x ∈ A.

Nếu mọi phần tử của tập hợp A đều là phần tử của tập hợp B thì ta nói A là một tập hợp con của B và viết A B (đọc là A chứa trong B).

Thay cho A B ta cũng viết B ⊃ A (đọc là B chứa A hoặc B bao hàm A)

Như vậy A ⊂ B <=> (∀x : x ∈ A => x ∈ B).

Nếu A không phải là một tập con của B ta viết A ⊄ B.

Ta có các tính chất sau :

A Avới mọi tập hợp A

Nếu A ⊂ B và B ⊂ C thì A ⊂ C (h.4)

ø A với mọi tập hợp A.

Khi A ⊂ B và B ⊂ A ta nói tập hợp A bằng tập hợp B và viết là A = B. Như vậy

A = B <=> (∀x : x ∈ A <=> x ∈ B).

Lý thuyết Các phép toán tập hợp

I. GIAO CỦA HAI TẬP HỢP

Tập hợp C gồm các phần tử vừa thuộc A, vừa thuộc B được gọi là giao của A và B.

Kí hiệu C = A ∩ B (phần gạch chéo trong hình).

Vậy A ∩ B = {x| x ∈ A; x ∈ B}

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Tập hợp C gồm các phần tử thuộc A hoặc thuộc B được gọi là hợp của A và B

Kí hiệu C = A ∪ B (phần gạch chéo trong hình).

Vậy A ∪ B = {x| x ∈ A hoặc x ∈ B}

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Tập hợp C gồm các phần tử thuộc A nhưng không thuộc B gọi là hiệu của A và B

Kí hiệu C = A \ B (phần gạch chéo trong hình 7).

Vậy A \ B = A ∪ B = {x| x ∈ A và x ∈ B}

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Khi B ⊂ A thì A \ B gọi là phần bù của B trong A, kí hiệu CAB.

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

....................................

....................................

....................................

Lời giải bài tập lớp 10 sách mới:


Giải bài tập lớp 10 sách mới các môn học