Phương trình quy về phương trình bậc hai (Lý thuyết Toán lớp 10) - Chân trời sáng tạo

Với tóm tắt lý thuyết Toán 10 Bài 3: Phương trình quy về phương trình bậc hai sách Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán 10.

Lý thuyết Phương trình quy về phương trình bậc hai

1. Phương trình dạng ax2+bx+c=dx2+ex+f

Để giải phương trình ax2+bx+c=dx2+ex+f, ta làm như sau:

Bước 1: Bình phương hai vế của phương trình để được phương trình:

ax2 + bx + c = dx2 + ex + f

Bước 2: Giải phương trình nhận được ở Bước 1.

Bước 3: Thử lại xem các giá trị x tìm được ở Bước 2 có thoả mãn phương trình đã cho hay không và kết luận nghiệm.

Ví dụ: Giải phương trình sau: x2+3x2=x+1

Hướng dẫn giải

x2+3x2=x+1 (1)

Bình phương hai vế của phương trình (1) ta có:

x2 + 3x – 2 = x + 1

<=> x2 + 2x – 3 = 0

<=> x = 1 hoặc x = –3.

• Với x = 1 thay vào phương trình (1) ta được:

12+3.12=1+1 2=2 (đúng)

Do đó x = 1 là nghiệm của phương trình (1).

• Với x = –3 ta thấy x + 1 = –3 +1 = –2 < 0 nên không tồn tại x+1.

Do đó x = –3 không là nghiệm của phương trình (1).

Vậy phương trình đã cho có nghiệm x = 1.

2. Phương trình dạng ax2+bx+c=dx+e

Để giải phương trình ax2+bx+c=dx+e, ta làm như sau:

Bước 1: Bình phương hai vế của phương trình để được phương trình:

ax2 + bx + c = dx +e

Bước 2: Giải phương trình nhận được ở Bước 1.

Bước 3: Thử lại xem các giá trị x tìm được ở Bước 2 có thoả mãn phương trình đã cho hay không và kết luận nghiệm.

Ví dụ: Giải phương trình sau: 4+2xx2=x2

Hướng dẫn giải

4+2xx2=x2 (2)

Bình phương hai vế phương trình (2) ta có:

4 + 2x – x2 = (x – 2)2

<=> 4 + 2x – x2 = x2 – 4x + 4

<=> 2x2 – 6x = 0

<=> 2x(x – 3) = 0

<=> x = 0 hoặc x = 3

• Với x = 0 thay vào phương trình (2) ta được:

<=> 4+2.002=02 <=> 2 = –2 (vô lí)

Do đó x = 0 không là nghiệm của phương trình (2).

• Với x = 3 thay vào phương trình (2) ta được:

4+2.332=32 <=> 1 = 1 (đúng)

Do đó x = 3 là nghiệm của phương trình (1).

Vậy phương trình đã cho có nghiệm x = 3.

Bài tập Phương trình quy về phương trình bậc hai

Bài 1. Giải các phương trình sau:

a) x25x+4=2x23x+12;

b) x24x+46x2x1=0;

c) x22x+4=2x.

Hướng dẫn giải

a) x25x+4=2x23x+12; (1)

Bình phương hai vế phương trình (1) ta có:

x2 – 5x + 4 = –2x2 – 3x + 12

=> 3x2 – 2x – 8 = 0

=> x = 2 hoặc x = 43

• Với x = 2 ta có x2 – 5x + 4 = 22 – 5.2 + 4 = –10.

Khi đó không tồn tại x25x+4.

Do đó x = 2 không là nghiệm của phương trình (1).

• Với x = 43 thay vào phương trình (1) ta được:

4325.43+4=24323.43+12

473=473 (đúng)

Do đó x = 43 là nghiệm của phương trình (1).

Vậy phương trình đã cho có nghiệm x = 43 .

b) x24x+46x2x1=0

x24x+4=6x2x1 (2)

Bình phương hai vế phương trình (2) ta có:

x2 – 4x + 4 = (6 – x)(2x – 1)

=> x2 – 4x + 4 = 12x – 6 – 2x2 + x

=> 3x2 – 17x + 10 = 0

Phương trình quy về phương trình bậc hai (Lý thuyết Toán lớp 10) | Chân trời sáng tạo

• Với x = 5 thay vào phương trình (2) ta có:

524.5+4=652.51 <=> 3 = 3 (đúng)

Do đó x = 5 là nghiệm của phương trình đã cho.

• Với x = 23 thay vào phương trình (2) ta có:

2324.23+4=6232.231

<=> 43 = 43 (đúng)

Do đó x = 23 là nghiệm của phương trình đã cho.

Vậy phương trình đã cho có tập nghiệm S = 5;23.

c) x22x+4=2x. (3)

Bình phương hai vế phương trình (3) ta có:

x2 – 2x + 4 = 2 – x

=> x2 – x + 2 = 0

=> x122+74=0

(vô lí vì x122+74>0 với mọi x).

Vậy phương trình đã cho vô nghiệm.

Bài 2. Giải các phương trình sau:

a) x23x+2=x1;

b) 4x2+2x+10=3x+1;

c) x12x12x1=0;

d) x3x29x+1=2.

Hướng dẫn giải

a) x23x+2=x1 (1)

Bình phương hai vế phương trình (1) ta có:

x2 – 3x + 2 = (x – 1)2

=> x2 – 3x + 2 = x2 – 2x + 1

=> –x = –1

=> x = 1

Thay x = 1 vào phương trình (1) ta có:

123.1+2=11

<=> 0 = 0 (đúng)

Do đó x = 1 là nghiệm của phương trình (1).

Vậy phương trình đã cho có nghiệm là x = 1.

b) 4x2+2x+10=3x+1 (2)

Bình phương hai vế phương trình (2) ta có:

4x2 + 2x + 10 = (3x + 1)2

=> 4x2 + 2x + 10 = 9x2 + 6x + 1

=> –5x2 – 4x + 9 = 0

Phương trình quy về phương trình bậc hai (Lý thuyết Toán lớp 10) | Chân trời sáng tạo

• Với x = 1 thay vào phương trình (2) ta có:

4.12+2.1+10=3.1+1

<=> 4 = 4 (đúng)

Do đó x = 1 là nghiệm của phương trình (2).

• Với x = 95 thay vào phương trình (2) ta có:

4.952+2.95+10=3.95+1

<=> 225=225 (vô lí)

Do đó x = 95 không là nghiệm của phương trình (2).

Vậy phương trình đã cho có nghiệm là x = 1.

c) x12x12x1=0

x12x1=2x+1 (3)

Bình phương hai vế phương trình (3) ta có:

(x – 1)(2x – 1) = (2x + 1)2

=> 2x2 – x – 2x + 1 = 4x2 + 4x + 1

=> –2x2 – 7x = 0

Phương trình quy về phương trình bậc hai (Lý thuyết Toán lớp 10) | Chân trời sáng tạo

• Với x = 0 thay vào phương trình (3) ta có:

012.01=2.0+1

<=> 1 = 1 (đúng)

Do đó x = 0 là nghiệm của phương trình (3).

• Với x = -72 thay vào phương trình (3) ta có:

7212.721=2.72+1

<=> 6 = –6 (vô lí)

Do đó x = -72 không là nghiệm của phương trình (3).

Vậy phương trình đã cho có nghiệm là x = 0.

d) x3x29x+1=2

x2=3x29x+1

3x29x+1=x2 (4)

Bình phương hai vế phương trình (4) ta có:

3x2 – 9x + 1 = (x – 2)2

=> 3x2 – 9x + 1 = x2 – 4x + 4

=> 2x2 – 5x – 3 = 0

Phương trình quy về phương trình bậc hai (Lý thuyết Toán lớp 10) | Chân trời sáng tạo

• Với x = 3 thay vào phương trình (4) ta có:

3.329.3+1=32

<=> 1 = 1 (đúng)

Do đó x = 3 là nghiệm của phương trình (4).

• Với x = -12 thay vào phương trình (4) ta có:

3.1229.12+1=122

<=> 52=52 (vô lí)

Do đó x = -12 không là nghiệm của phương trình (4).

Vậy phương trình đã cho có nghiệm là x = 3.

Bài 3. Tam giác ABC vuông tại A, có cạnh AC ngắn hơn cạnh BC là 9 cm. Tính độ dài ba cạnh của tam giác ABC biết chu vi của tam giác bằng 70 cm.

Hướng dẫn giải

Phương trình quy về phương trình bậc hai (Lý thuyết Toán lớp 10) | Chân trời sáng tạo

Gọi AC = x (cm) (x > 0).

Cạnh AC ngắn hơn cạnh BC là 9 cm nên BC = x + 9 (cm).

Tam giác ABC vuông tại A, theo định lí Pythagore ta có:

BC2 = AB2 + AC2

=> AB2 = BC2 – AC2

=> AB2 = (x + 9)2 – x2

=> AB2 = x2 + 18x + 81 – x2 = 18x + 81

AB=18x+81 (cm)

Ta có chu vi của tam giác ABC là:

AB + BC + CA

= 18x+81 + x + 9 + x

= 18x+81 + 2x + 9 (cm)

Mà theo bài chu vi tam giác ABC bằng 70 cm.

Do đó ta có: 18x+81 + 2x + 9 = 70

<=> 18x+81= 61 – 2x (*)

Bình phương hai vế của phương trình trên ta có:

18x + 81 = (61 – 2x)2

=> 18x + 81 = 3721 – 244x + 4x2

=> 4x2 – 262x + 3640 = 0

Phương trình quy về phương trình bậc hai (Lý thuyết Toán lớp 10) | Chân trời sáng tạo

• Với x = 20 thay vào phương trình (*) ta có:

18.20+81 = 61 – 2.20

<=> 21 = 21 (đúng)

Do đó x = 20 là nghiệm của phương trình (*).

• Với x = 45,5 thay vào phương trình (*) ta có:

18.45,5+81 = 61 – 2.45,5

<=> 30 = –30 (vô lí)

Do đó x = 45,5 không là nghiệm của phương trình (*).

Khi đó AC = 20 (cm), BC = 29 (cm) và AB = 18.20+81=21 (cm).

Vậy AC = 20 cm, AB = 21 cm và BC = 29 cm.

Bài 4. Một đài quan sát O cách ba vị trí A, B, C như hình vẽ dưới đây.

Phương trình quy về phương trình bậc hai (Lý thuyết Toán lớp 10) | Chân trời sáng tạo

Tính khoảng cách từ đài quan sát O tới B biết khoảng cách từ vị trí A đến vị trí C gấp đôi khoảng cách từ vị trí A đến vị trí B và khoảng cách từ O đến B ngắn hơn khoảng cách từ O đến A.

Hướng dẫn giải

Vì OB là khoảng cách nên x > 0.

Vì khoảng cách từ O đến B ngắn hơn khoảng cách từ O đến A nên x < 2.

Áp dụng định lí côsin cho tam giác OAC ta có:

AC2 = OA2 + OC2 – 2.OA.OC.cos AOC^

=> AC2 = 22 + (x + 1)2 – 2.2.(x + 1).cos120°

=> AC2 = 4 + x2 + 2x + 1 + 2.(x +1) = x2 + 4x + 7.

=> AC =x2+4x+7 (km).

Áp dụng định lí côsin cho tam giác OAB ta có:

AB2 = OA2 + OB2 – 2.OA.OB.cos AOB^

=> AB2 = 22 + x2 – 2.2.x.cos(180° – 120°)

=> AB2 = 4 + x2 – 2x = x2 – 2x + 4.

AB=x22x+4(km).

Vì khoảng cách từ vị trí A đến vị trí C gấp đôi khoảng cách từ vị trí A đến vị trí B nên AC = 2AB.

Do đó x2+4x+7=2.x22x+4

Bình phương hai vế phương trình trên ta có:

x2 + 4x + 7 = 4.(x2 – 2x + 4)

=> x2 + 4x + 7 = 4x2 – 8x + 16

=> 3x2 – 12x + 9 = 0

Phương trình quy về phương trình bậc hai (Lý thuyết Toán lớp 10) | Chân trời sáng tạo

Vậy khoảng cách từ đài quan sát O tới vị trí B là 1 km.

Học tốt Phương trình quy về phương trình bậc hai

Các bài học để học tốt Phương trình quy về phương trình bậc hai Toán lớp 10 hay khác:

Xem thêm tóm tắt lý thuyết Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:


Giải bài tập lớp 10 Chân trời sáng tạo khác