Nhị thức Newton (Lý thuyết Toán lớp 10) - Chân trời sáng tạo
Với tóm tắt lý thuyết Toán 10 Bài 3: Nhị thức Newton sách Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán 10.
Lý thuyết Nhị thức Newton
Hai công thức khai triển:
Hai công thức trên gọi là công thức nhị thức Newton (gọi tắt là nhị thức Newton) ứng với n = 4 và n = 5.
Chú ý:
– Các hệ số trong khai triển nhị thức Newton (a + b)n với n = 0; 1; 2; 3; … được viết thành từng hàng và xếp thành bảng số như dưới đây.
Bảng số này có quy luật: số đầu tiên và số cuối cùng của mỗi hàng đều là 1; tổng của 2 số liên tiếp cùng hàng bằng số của hàng kế dưới ở vị trí giữa hai số đó (được chỉ bởi mũi tên trên bảng).
Bảng số trên dược gọi là tam giác Pascal (đặt theo tên của nhà toán học, vật lí học, triết học người Pháp Blaise Pascal, 1623 – 1662).
Ví dụ: Sử dụng công thức nhị thức Newton khai triển biểu thức (a + 2)4.
Hướng dẫn giải
Theo công thức nhị thức Newton ta có:
(a + 2)4 = 1.a4 + 4a3.2 + 6a2.22 + 4a.23 + 24
= a4 + 8a3 + 24a2 + 32a + 16.
Ví dụ: Khai triển và rút gọn biểu thức:
Hướng dẫn giải
Theo công thức nhị thức Newton ta có:
Do đó ta có:
Bài tập Nhị thức Newton
Bài 1.Sử dụng công thức nhị thức Newton khai triển biểu thức:
a) (2x + y)4;
b)
Hướng dẫn giải
Theo công thức nhị thức Newton ta có:
a) (2x + y)4 = (2x)4 + 4.(2x)3.y + 6.(2x)2.y2 + 4(2x).y3 + y4
= 16x4 + 32x3y + 24x2y2 + 8xy3 + y4.
Bài 2. Tìm hệ số của x4 trong khai triển (2x – 3)5.
Hướng dẫn giải
Theo công thức nhị thức Newton ta có:
(2x + 3)5 = (2x)5 + 5(2x)4.(–3) + 10.(2x)3.(–3)2 + 10.(2x)2.(–3)3 + 5.2x.(–3)4 + (–3)5
= 32x5 – 240x4 + 720x3 – 1080x2 + 810x – 243
Vậy hệ số của x4 trong khai triển là –240.
Bài 3. Sử dụng công thức nhị thức Newton chứng tỏ rằng:
Hướng dẫn giải
Giả sử ta có khai triển (a + b)n với n = 0; 1; 2; …
Ta thấy trong biểu thức chứng minh có tổ hợp chập k của 5, nên n = 5.
Ở đây có xuất hiện lũy thừa của số 2 từ mũ 1 đến mũ 5 nên b = 2.
Ta có khai triển:
Khi x = 1 thì ta có:
Bài 4. Khai triển và rút gọn biểu thức: (x + 2)4 + (2 – x)4.
Từ đó tính giá trị biểu thức: 2,054 + 1,954.
Hướng dẫn giải
Theo công thức nhị thức Newton ta có:
• (x + 2)4 = x4 + 4x3.2 + 6x2.22 + 4x.23 + 24
= x4 + 8x3 + 24x2 + 32x + 16.
• (2 – x)4 = 24 + 4.23.(–x) + 6.22.(–x)2 + 4.2.(–x)3 + (–x)4
= x4 – 8x3 + 24x2 – 32x + 16.
Do đó ta có:
(x + 2)4 + (2 – x)4 = 2x4 + 48x2 + 32.
Với x = 0,05 ta có:
(0,05 + 2)4 + (2 – 0,05)4
= 2.(0,05)4 + 48.(0,05)2 + 32
= 32,1200125.
Vậy 2,054 + 1,954 = 32,1200125.
Học tốt Nhị thức Newton
Các bài học để học tốt Nhị thức Newton Toán lớp 10 hay khác:
Xem thêm tóm tắt lý thuyết Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:
- Tổng hợp lý thuyết Toán 10 Chương 8
- Lý thuyết Toán 10 Bài 1: Toạ độ của vectơ
- Lý thuyết Toán 10 Bài 2: Đường thẳng trong mặt phẳng toạ độ
- Lý thuyết Toán 10 Bài 3: Đường tròn trong mặt phẳng toạ độ
- Lý thuyết Toán 10 Bài 4: Ba đường conic trong mặt phẳng toạ độ
Xem thêm các tài liệu học tốt lớp 10 hay khác:
- Giải sgk Toán 10 Chân trời sáng tạo
- Giải Chuyên đề học tập Toán 10 Chân trời sáng tạo
- Giải SBT Toán 10 Chân trời sáng tạo
- Giải lớp 10 Chân trời sáng tạo (các môn học)
- Giải lớp 10 Kết nối tri thức (các môn học)
- Giải lớp 10 Cánh diều (các môn học)
- Soạn văn 10 (hay nhất) - CTST
- Soạn văn 10 (ngắn nhất) - CTST
- Soạn văn 10 (siêu ngắn) - CTST
- Giải Toán 10 - CTST
- Giải Tiếng Anh 10 Global Success
- Giải Tiếng Anh 10 Friends Global
- Giải sgk Tiếng Anh 10 iLearn Smart World
- Giải sgk Tiếng Anh 10 Explore New Worlds
- Giải sgk Vật lí 10 - CTST
- Giải sgk Hóa học 10 - CTST
- Giải sgk Sinh học 10 - CTST
- Giải sgk Địa lí 10 - CTST
- Giải sgk Lịch sử 10 - CTST
- Giải sgk Kinh tế và Pháp luật 10 - CTST
- Giải sgk Hoạt động trải nghiệm 10 - CTST