Tích của một số với một vectơ (Lý thuyết Toán lớp 10) - Chân trời sáng tạo
Với tóm tắt lý thuyết Toán 10 Bài 3: Tích của một số với một vectơ sách Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán 10.
Lý thuyết Tích của một số với một vectơ
1. Tích của một số với một vectơ và các tính chất
Cho số k khác 0 và khác . Tích củasố k với vectơ là một vectơ, kí hiệu là k.
Vectơ kcùng hướng với nếu k > 0, ngược hướng với nếu k < 0 và có độ dài bằng |k|.||.
Ta quy ước 0 = và k = .
Người ta còn gọi tích của một số với một vectơ là tích của một vectơ với một số.
Ví dụ: Cho tam giác ABC có D, E, F lần lượt là trung điểm các cạnh AB, BC, CA. Tìm các vectơ bằng: .
Hướng dẫn giải
+ Vectơ bằng :
Tam giác ABC có D, E lần lượt là trung điểm của AB, BC.
Do đó DE là đường trung bình của tam giác ABC.
Suy ra DE // AC và AC = 2DE.
Vì k = 2 > 0 nên vectơ cần tìm cùng hướng với và có độ dài bằng 2DE.
Ta có cùng hướng với và AC = 2DE.
Do đó .
+ Vectơ bằng :
Ta có F là trung điểm CA.
Do đó FA = CF = CA.
Vì k = - < 0, nên vectơ cần tìm ngược hướng với và có độ dài bằng CA.
Ta có cùng ngược hướng với và AF = FC = CA.
Do đó .
+ Vectơ bằng :
Ta có E là trung điểm BC.
Do đó CB = 2EC.
Vì k = –2 < 0, nên vectơ cần tìm ngược hướng với và có độ dài bằng 2EC.
Ta có ngược hướng với và CB = 2EC.
Do đó .
Vậy
Tính chất:
Với hai vectơ và bất kì, với mọi số thực h và k, ta có:
• k(+) = k + k;
• (h+k) = h + k;
• h(k) = (hk);
• 1.=;
• (-1) = -.
Ví dụ:
Ta có:
a) 6(+) = 6 + 6;
b) (3+x) = 3 + x;
c) 6.(-5) = [6.(-5)] = -30;
d) 2 - 7 = (2-7) = -5.
Ví dụ: Cho tam giác ABC. Chứng minh G là trọng tâm của tam giác ABC khi và chỉ khi .
Hướng dẫn giải
Ta có
(quy tắc ba điểm)
⇔ G là trọng tâm của tam giác ABC.
Vậy G là trọng tâm của tam giác ABC khi và chỉ khi .
2. Điều kiện để hai vectơ cùng phương
Hai vectơ và ( khác ) cùng phương khi và chỉ khi có số k sao cho = k.
Nhận xét: Ba điểm phân biệt A, B, C thẳng hàng khi và chỉ khi có số k khác 0 để .
Chú ý: Cho hai vectơ và không cùng phương. Với mỗi luôn tồn tại duy nhất cặp số thực (m; n) sao cho = m + n.
Ví dụ: Cho tam giác ABC. Lấy các điểm M, N, P sao cho , , .
a) Biểu diễn theo .
b) Biểu diễn theo .
c) Chứng minh rằng: 3 điểm M, N, P thẳng hàng.
Hướng dẫn giải
a) • Ta có || = |3| MB = 3MC.
Mà , cùng hướng (do k = 3 > 0)
Do đó ba điểm B, C, M thẳng hàng và C nằm giữa B, M sao cho MB = 3MC.
• Ta có nên P là trung điểm AB.
Do đó AP = AB.
Mà cùng hướng.
Suy ra .
Ta có:
Ta có
.
Ta có .
Vậy .
b) Ta có .
Do đó || = |-3| hay NA = 3NC.
Mà , ngược hướng (do k = ‒3 < 0).
Do đó ba điểm A, N, C thẳng hàng và N nằm giữa hai điểm A và C sao cho NA = 3NC hay AN = AC
Suy ra .
Ta có
Vậy
c) Từ , ta suy ra .
Từ , ta suy ra .
Do đó ta có hay nên ba điểm M, N, P thẳng hàng.
Vậy ba điểm M, N, P thẳng hàng.
Bài tập Tích của một số với một vectơ
1. Bài tập trắc nghiệm
Câu 1. Cho ba điểm phân biệt A, B, C. Nếu thì đẳng thức nào dưới đây đúng?
A. ;
B. ;
C. ;
D. .
Hướng dẫn giải
Đáp án đúng là: D
Từ đẳng thức , ta suy ra ba điểm A, B, C thẳng hàng.
Vì k = – 3 < 0 nên và ngược hướng.
Do đó điểm A nằm giữa hai điểm B và C.
Ta có , suy ra || = |-3|, do đó AB = 3AC.
Suy ra BC = AB + AC = 3AC + AC = 4AC.
Mà , cùng hướng.
Do đó ta suy ra .
Vậy ta chọn phương án D.
Câu 2. Cho tam giác ABC có trọng tâm G. Gọi các điểm D, E, F lần lượt là trung điểm của các cạnh BC, CA và AB. Biểu diễn theo và ta được:
A. ;
B. ;
C. ;
D. .
Hướng dẫn giải
Đáp án đúng là: D
Vì G là trọng tâm của tam giác ABC nên ta có AG = AD
Mà cùng hướng nên .
Tam giác ABC có D là trung điểm cạnh BC, suy ra .
Do đó .
Ta có E, F lần lượt là trung điểm AC, AB.
Suy ra và .
Nên .
Vậy ta chọn phương án D.
Câu 3.Cho tam giác ABC. Gọi M là trung điểm BC và N là trung điểm AM. Đường thẳng BN cắt AC tại P. Khi đó nếu thì giá trị của x là:
A. ;
B. ;
C. ;
D. .
Hướng dẫn giải
Đáp án đúng là: C
Kẻ MK // BP (K ∈ AC).
Do M là trung điểm BC nên ta suy ra K là trung điểm CP (1).
Vì MK // NP, mà N là trung điểm AM nên ta suy ra P là trung điểm AK (2).
Từ (1), (2) ta suy ra AP = PK = KC.
Do đó AP = CP.
Ta có AC = AP + CP.
Suy ra AC = CP + CP = CP.
Vì ngược hướng với nhau.
Nên .
Do đó x = .
Vậy ta chọn phương án C.
2. Bài tập tự luận
Bài 1. Cho tứ giác ABCD. Gọi M, N lần lượt là trung điểm của các cạnh AB, CD và O là trung điểm của MN. Chứng minh rằng .
Hướng dẫn giải
Gọi E và F lần lượt là điểm đối xứng với O qua M và N.
Suy ra M là trung điểm của AB và EO; N là trung điểm của DC và OF.
Khi đó các tứ giác OAEB và OCFD là các hình bình hành.
(quy tắc hình bình hành trong hình bình hành OAEB)
Và (quy tắc hình bình hành trong hình bình hành OCFD).
Vì O là trung điểm của MN nên OM = ON, mà OM = ME, ON = NF.
Do đó OE = OF hay O là trung điểm của EF.
Suy ra .
Vậy .
Bài 2.Cho hình bình hành ABCD. Gọi M là trung điểm cạnh BC. Hãy biểu thị theo hai vectơ và
Hướng dẫn giải
Gọi E là điểm đối xứng với A qua M.
Khi đó M là trung điểm của BC và AE.
Suy ra tứ giác ABEC là hình bình hành.
(quy tắc hình bình hành)
Mà (do M là trung điểm của AE)
Xét hình bình hành ABCD có: (quy tắc hình bình hành)
Vậy
Bài 3. Cho tam giác ABC.
a) Hãy xác định điểm M để
b) Chứng minh rằng với mọi điểm O, ta có:
Hướng dẫn giải
a) Gọi G là trọng tâm tam giác ABC suy ra .
Ta có:
Do đó vectơ cùng hướng với vectơ và GM = GC.
Vậy điểm M nằm giữa G và C sao cho GM = GC
b) Ta có:
Vậy với mọi điểm O, ta có:
Học tốt Tích của một số với một vectơ
Các bài học để học tốt Tích của một số với một vectơ Toán lớp 10 hay khác:
Xem thêm tóm tắt lý thuyết Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:
Lý thuyết Toán 10 Bài 2: Mô tả và biểu diễn dữ liệu trên các bảng và biểu đồ
Lý thuyết Toán 10 Bài 3: Các số đặc trưng đo xu thế trung tâm của mẫu số liệu
Xem thêm các tài liệu học tốt lớp 10 hay khác:
- Giải sgk Toán 10 Chân trời sáng tạo
- Giải Chuyên đề học tập Toán 10 Chân trời sáng tạo
- Giải SBT Toán 10 Chân trời sáng tạo
- Giải lớp 10 Chân trời sáng tạo (các môn học)
- Giải lớp 10 Kết nối tri thức (các môn học)
- Giải lớp 10 Cánh diều (các môn học)
- Soạn văn 10 (hay nhất) - CTST
- Soạn văn 10 (ngắn nhất) - CTST
- Soạn văn 10 (siêu ngắn) - CTST
- Giải Toán 10 - CTST
- Giải Tiếng Anh 10 Global Success
- Giải Tiếng Anh 10 Friends Global
- Giải sgk Tiếng Anh 10 iLearn Smart World
- Giải sgk Tiếng Anh 10 Explore New Worlds
- Giải sgk Vật lí 10 - CTST
- Giải sgk Hóa học 10 - CTST
- Giải sgk Sinh học 10 - CTST
- Giải sgk Địa lí 10 - CTST
- Giải sgk Lịch sử 10 - CTST
- Giải sgk Kinh tế và Pháp luật 10 - CTST
- Giải sgk Hoạt động trải nghiệm 10 - CTST