Lý thuyết Toán 10 Chương 3 Kết nối tri thức, Chân trời sáng tạo, Cánh diều
Tổng hợp lý thuyết Toán 10 Chương 3 Kết nối tri thức, Chân trời sáng tạo, Cánh diều hay, chi tiết giúp học sinh lớp 10 nắm vững kiến thức trọng tâm, ôn tập để học tốt Toán 10 Chương 3. Bạn vào tên chương hoặc Xem chi tiết để theo dõi bài viết.
(Kết nối tri thức) Tóm tắt lý thuyết Toán 10 Chương 3: Hệ thức lượng trong tam giác
(Chân trời sáng tạo) Tóm tắt lý thuyết Toán 10 Chương 3: Hàm số bậc hai và đồ thị
(Cánh diều) Tóm tắt lý thuyết Toán 10 Chương 3: Hàm số và đồ thị
Lưu trữ: Tóm tắt lý thuyết Toán 10 Chương 3 (sách cũ)
- Lý thuyết Đại cương về phương trình
- Lý thuyết Phương trình quy về phương trình bậc nhất, bậc hai
- Lý thuyết Phương trình và hệ phương trình bậc nhất nhiều ẩn
- Lý thuyết Tổng hợp Chương 3: Phương trình, Hệ phương trình
Lý thuyết Đại cương về phương trình
1. Phương trình một ẩn
Phương trình ẩn x là mệnh đề chứa biến có dạng
f(x) = g(x) (1)
trong đó f(x) và g(x) là những biểu thức của x. Ta gọi f(x) là vế trái, g(x) là vế phải của phương trình (1).
Nếu có số thực x0 sao cho f(xo) = g(xo) là mệnh đề đúng thì xo được gọi là một nghiệm của phương trình (1).
Giải phương trình (1) là tìm tất cả các nghiệm của nó (nghĩa là tìm tập nghiệm).
Nếu phương trình không có nghiệm nào cả thì ta nói phương trình vô nghiệm (hoặc nói tập nghiệm của nó là rỗng).
2. Điều kiện của một phương trình
Khi giải phương trình (1), ta cần lưu ý với điều kiện đối với ẩn số x để f(x) và g(x) có nghĩa (tức là mọi phép toán đều thực hiện được). Ta cũng nói đó là điều kiện xác định của phương trình (hay gọi tắt là điều kiện của phương trình).
3. Phương trình nhiều ẩn
Ngoài các phương trình một ẩn, ta còn gặp những phương trình có nhiều ẩn số, chẳng hạn
3x + 2y = x2 – 2xy + 8, (2)
4x2 – xy + 2z = 3z2 + 2xz + y2 ( 3)
Phương trình (2) là phương trình hai ẩn (x và y), còn (3) là phương trình ba ẩn (x, y và z).
Khi x = 2, y = 1 thì hai vế của phương trình (2) có giá trị bằng nhau, ta nói cặp (x; y) = (2; 1) là một nghiệm của phương trình (2).
Tương tự, bộ ba số (x; y; z) = (–1; 1; 2) là một nghiệm của phương trình (3).
4. Phương trình chứa tham số
Trong một phương trình (một hoặc nhiều ẩn), ngoài các chữ đóng vai trò ẩn số còn có thể có các chữ khác được xem như những hằng số và được gọi là tham số.
1. Phương trình tương đương
Hai phương trình được gọi là tương đương khi chúng có cùng tập nghiệm.
2. Phép biến đổi tương đương
Định lí
Nếu thực hiện các phép biển đổi sau đây trên một phương trình mà không làm thay đổi điều kiện của nó thì ta được một phương trình mới tương đương
a) Cộng hay trừ hai vế với cùng một số hoặc cùng một biểu thức;
b) Nhân hoặc chia hai vế với cùng một số khác 0 hoặc với cùng một biểu thức luôn có giá trị khác 0.
Chú ý: Chuyển vế và đổi dấu một biểu thức thực chất là thực hiện phép cộng hay trừ hai vế với biểu thức đó.
3. Phương trình hệ quả
Nếu mọi nghiệm của phương trình f(x) = g(x) đều là nghiệm của phương trình f1(x) = g1(x) thì phương trình f1(x) = g1(x) được gọi là phương trình hệ quả của phương trình f(x) = g(x)
Ta viết
f(x) = g(x) => f1(x) = g1(x).
Phương trình hệ quả có thể có thêm nghiệm không phải là nghiệm của phương trình ban đầu. Ta gọi đó là nghiệm ngoại lai.
Lý thuyết Phương trình quy về phương trình bậc nhất, bậc hai
1. Phương trình bậc nhất
Cách giải và biện luận phương trình dạng ax + b = 0 được tóm tắt trong bảng sau
Khi a ≠ 0 phương trình ax + b = 0 được gọi là phương trình bậc nhất một ẩn.
2. Phương trình bậc hai
Cách giải và công thức nghiệm của phương trình bậc hai được tóm tắt trong bảng sau
3. Định lí Vi–ét
Nếu phương trình bậc hai ax2 + bx + c = 0 (a ≠ 0) có hai nghiệm x1, x2 thì
x1 + x2 = - , x1x2 = .
Ngược lại, nếu hai số u và v có tổng u + v = S và tích uv = P thì u và v là các nghiệm của phương trình
x2 – Sx + P = 0.
Có nhiều phương trình khi giải có thể biến đổi về phương trình bậc nhất hoặc bậc hai.
Sau đây ta xét hai trong các dạng phương trình đó.
1. Phương trình chứa ẩn trong dấu giá trị tuyệt đối
Để giải phương trình chứa ẩn trong dấu giá trị tuyệt đối ta có thể dùng định nghĩa của giá trị tuyệt đối hoặc bình phương hai vế để khử dấu giá trị tuyệt đối.
Ví dụ 1. Giải phương trình |x – 3| = 2x + 1. (3)
Giải
Cách 1
a) Nếu x ≥ 3 thì phương trình (3) trở thành x – 3 = 2x + 1. Từ đó x = –4.
Giá trị x = –4 không thỏa mãn điều kiện x ≥ 3 nên bị loại.
b) Nếu x < 3 thì phương trình (3) trở thành –x + 3 = 2x + 1. Từ đó x = .
Giá trị này thỏa mãn điều kiện x < 3 nên là nghiệm.
Kết luận. Vậy nghiệm của phương trình là x =
Cách 2. Bình phương hai vế của phương trình (3) ta đưa tới phương trình hệ quả
(3) => (x – 3)2 = (2x + 1)2
=> x2 – 6x + 9 = 4x2 + 4x + 1
=> 3x2 + 10x – 8 = 0.
Phương trình cuối có hai nghiệm là x = –4 và x =
Thử lại ta thấy phương trình (3) chỉ có nghiệm là x =
2. Phương trình chứa ẩn dưới dấu căn
Để giải các phương trình chứa ẩn dưới dấu căn bậc hai, ta thường bình phương hai vế để đưa về một phương trình hệ quả không chứa ẩn dưới dấu căn.
Ví dụ 2. Giải phương trình = x – 2 (4).
Giải.
Điều kiện của phương trình (4) là x ≥
Bình phương hai vế của phương trình (4) ta đưa tới phương trình hệ quả
(4) => 2x – 3 = x2 – 4x + 4
=> x2 – 6x + 7 = 0.
Phương trình cuối có hai nghiệm là x = 3 + √2 và x = 3 – √2 . Cả hai giá trị này đều thỏa mãn điều kiện của phương trình (4), nhưng khi thay vào phương trình (4) thì giá trị x = 3 – √2 bị loại (vế trái dương còn vế phải âm), còn giá trị x= 3 + √2 là nghiệm (hai vế cùng bằng √2 + 1).
Kết luận. Vậy nghiệm của phương trình (4) là x= 3 + √2 .
Xem thêm các bài tổng hợp lý thuyết Toán lớp 10 đầy đủ, chi tiết khác:
- Tổng hợp lý thuyết chương Mệnh đề - Tập hợp
- Tổng hợp lý thuyết chương Hàm số bậc nhất và bậc hai
- Tổng hợp lý thuyết chương Bất đẳng thức. Bất phương trình
- Tổng hợp lý thuyết chương Thống kê
- Tổng hợp lý thuyết chương Cung và góc lượng giác. Công thức lượng giác
- Tổng hợp lý thuyết chương Vectơ
- Tổng hợp lý thuyết chương Tích vô hướng của hai vectơ và ứng dụng
- Tổng hợp lý thuyết chương Phương pháp tọa độ trong mặt phẳng
Lời giải bài tập lớp 10 sách mới:
- Giải bài tập Lớp 10 Kết nối tri thức
- Giải bài tập Lớp 10 Chân trời sáng tạo
- Giải bài tập Lớp 10 Cánh diều
- Giải Tiếng Anh 10 Global Success
- Giải Tiếng Anh 10 Friends Global
- Giải sgk Tiếng Anh 10 iLearn Smart World
- Giải sgk Tiếng Anh 10 Explore New Worlds
- Lớp 10 - Kết nối tri thức
- Soạn văn 10 (hay nhất) - KNTT
- Soạn văn 10 (ngắn nhất) - KNTT
- Soạn văn 10 (siêu ngắn) - KNTT
- Giải sgk Toán 10 - KNTT
- Giải sgk Vật lí 10 - KNTT
- Giải sgk Hóa học 10 - KNTT
- Giải sgk Sinh học 10 - KNTT
- Giải sgk Địa lí 10 - KNTT
- Giải sgk Lịch sử 10 - KNTT
- Giải sgk Kinh tế và Pháp luật 10 - KNTT
- Giải sgk Tin học 10 - KNTT
- Giải sgk Công nghệ 10 - KNTT
- Giải sgk Hoạt động trải nghiệm 10 - KNTT
- Giải sgk Giáo dục quốc phòng 10 - KNTT
- Lớp 10 - Chân trời sáng tạo
- Soạn văn 10 (hay nhất) - CTST
- Soạn văn 10 (ngắn nhất) - CTST
- Soạn văn 10 (siêu ngắn) - CTST
- Giải Toán 10 - CTST
- Giải sgk Vật lí 10 - CTST
- Giải sgk Hóa học 10 - CTST
- Giải sgk Sinh học 10 - CTST
- Giải sgk Địa lí 10 - CTST
- Giải sgk Lịch sử 10 - CTST
- Giải sgk Kinh tế và Pháp luật 10 - CTST
- Giải sgk Hoạt động trải nghiệm 10 - CTST
- Lớp 10 - Cánh diều
- Soạn văn 10 (hay nhất) - Cánh diều
- Soạn văn 10 (ngắn nhất) - Cánh diều
- Soạn văn 10 (siêu ngắn) - Cánh diều
- Giải sgk Toán 10 - Cánh diều
- Giải sgk Vật lí 10 - Cánh diều
- Giải sgk Hóa học 10 - Cánh diều
- Giải sgk Sinh học 10 - Cánh diều
- Giải sgk Địa lí 10 - Cánh diều
- Giải sgk Lịch sử 10 - Cánh diều
- Giải sgk Kinh tế và Pháp luật 10 - Cánh diều
- Giải sgk Tin học 10 - Cánh diều
- Giải sgk Công nghệ 10 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 10 - Cánh diều
- Giải sgk Giáo dục quốc phòng 10 - Cánh diều