Tổng hợp Lý thuyết Toán 10 Chương 3 Chân trời sáng tạo, Kết nối tri thức, Cánh diều
Với tóm tắt lý thuyết Toán 10 Chương 3 Chân trời sáng tạo, Kết nối tri thức, Cánh diều hay, chi tiết giúp học sinh lớp 10 nắm vững kiến thức trọng tâm, ôn tập để học tốt Toán 10 Chương 3. Bạn vào tên chương hoặc Xem chi tiết để theo dõi bài viết.
(Chân trời sáng tạo) Tóm tắt lý thuyết Toán 10 Chương 3: Hàm số bậc hai và đồ thị
(Cánh diều) Tóm tắt lý thuyết Toán 10 Chương 3: Hàm số và đồ thị
(Kết nối tri thức) Tóm tắt lý thuyết Toán 10 Chương 3: Hệ thức lượng trong tam giác
Lưu trữ: Tóm tắt lý thuyết Toán 10 Chương 3 (sách cũ)
- Lý thuyết Phương trình đường thẳng
- Lý thuyết Phương trình đường tròn
- Lý thuyết Phương trình đường elip
- Lý thuyết Tổng hợp Chương 3: Phương pháp tọa độ trong mặt phẳng
Lý thuyết Phương trình đường thẳng
Vectơ được gọi là vectơ chỉ phương của đường thẳng ∆ nếu ≠ và giá của song song hoặc trùng với ∆.
Nhận xét. Một đường thẳng có vô số vectơ chỉ phương.
Đường thẳng ∆ đi qua điểm M0(x0, y0) và có VTCP = (a; b)
=> phương trình tham số của đường thẳng ∆ có dạng
Nhận xét. Nếu đường thẳng ∆ có VTCP = (a; b)
thì có hệ số góc k =
Vectơ được gọi là vectơ pháp tuyến của đường thẳng ∆ nếu ≠ và vuông góc với vectơ chỉ phương của ∆.
Nhận xét.
+) Một đường thẳng có vô số vectơ pháp tuyến.
Đường thẳng ∆ đi qua điểm M0(x0, y0) và có VTPT = (A; B)
=> phương trình tổng quát của đường thẳng ∆ có dạng
A(x – x0) + B(y – y0) = 0 hay Ax + By + C = 0 với C = –Ax0 – By0.
Nhận xét.
+) Nếu đường thẳng ∆ có VTPT = (A; B) thì có hệ số góc k =
+) Nếu A, B, C đều khác 0 thì ta có thể đưa phương trình tổng quát về dạng
Phương trình này được gọi là phương trình đường thẳng theo đoạn chắn, đường thẳng này cắt Ox và Oy lần lượt tại M(a0; 0) và N(0; b0).
Xét hai đường thẳng có phương trình tổng quát là
∆1: a1x + b1y + c1 = 0 và ∆2: a2x + b2y + c2 = 0
Tọa độ giao điểm của ∆1 và ∆2 là nghiệm của hệ phương trình:
+) Nếu hệ có một nghiệm (x0; y0) thì ∆1 cắt ∆2 tại điểm M0(x0, y0).
+) Nếu hệ có vô số nghiệm thì ∆1 trùng với ∆2.
+) Nếu hệ vô nghiệm thì ∆1 và ∆2 không có điểm chung, hay ∆1 song song với ∆2
Cách 2. Xét tỉ số
Cho hai đường thẳng
∆1: a1x + b1y + c1 = 0 có VTPT = (a1; b1);
∆2: a2x + b2y + c2 = 0 có VTPT = (a2; b2);
Gọi α là góc tạo bởi giữa hai đường thẳng ∆1 và ∆2
Khi đó
Khoảng cách từ M0(x0, y0) đến đường thẳng ∆: ax + by + c = 0 được tính theo công thức
Nhận xét. Cho hai đường thẳng ∆1: a1x + b1y + c1 = 0 và ∆2: a2x + b2y + c2 = 0 cắt nhau thì phương trình hai đường phân giác của góc tạo bởi hai đường thẳng trên là:
1. Phương trình đường tròn có tâm và bán kính cho trước
Trong mặt phẳng Oxy, đường tròn (C ) tâm I(a; b) bán kính R có phương trình:
(x – a)2 + (y – b)2 = R2
Chú ý. Phương trình đường tròn có tâm là gốc tọa độ O và bán kính R là x2 + y2 = R2
2. Nhận xét
+) Phương trình đường tròn (x – a)2 + (y – b)2 = R2 có thể viết dưới dạng
x2 + y2 – 2ax – 2by + c = 0
trong đó c = a2 + b2 – R2.
+) Phương trình x2 + y2 – 2ax – 2by + c = 0 là phương trình của đường tròn (C) khi a2 + b2 – c2 > 0. Khi đó, đường tròn (C) có tâm I(a; b), bán kính R =
3. Phương trình tiếp tuyến của đường tròn
Cho đường tròn (C) có tâm I(a; b) và bán kính R.
Đường thẳng Δ là tiếp tuyến với (C) tại điểm Mo(xo; yo).
Ta có
+) Mo(xo; yo) thuộc Δ.
+) = (x0 – a; y0 – b) là vectơ pháp tuyến của Δ.
Do đó Δ có phương trình là
(xo – a).(x – xo) + (yo – b).(y – yo) = 0.
1. Định nghĩa: Cho hai điểm cố định F1 và F2 với F1F2 = 2c (c > 0). Tập hợp các điểm M thỏa mãn MF1 + MF2 = 2a (a không đổi và a > c > 0) là một đường Elip.
+) F1, F2 là hai tiêu điểm.
+) F1F2 = 2c là tiêu cự của Elip
2. Phương trình chính tắc của Elip
(E): = 1 với a2 = b2 + c2
Do đó điểm M(xo; yo) ∈ (E) <=> = 1 và |xo| ≤ a, |yo| ≤ b.
3. Tính chất và hình dạng của Elip
+) Trục đối xứng Ox (chứa trục lớn), Oy (chứa trục bé).
+) Tâm đối xứng O.
+) Tọa độ các đỉnh A1(–a; 0), A2(a; 0), B1(0; –b), B2(0; b).
+) Độ dài trục lớn 2a. Độ dài trục bé 2b.
+) Tiêu điểm F1(–c; 0), F2(c; 0).
+) Tiêu cự 2c.
Lý thuyết Phương trình đường tròn
1. Phương trình đường tròn có tâm và bán kính cho trước
Trong mặt phẳng Oxy, đường tròn (C ) tâm I(a; b) bán kính R có phương trình:
(x – a)2 + (y – b)2 = R2
Chú ý. Phương trình đường tròn có tâm là gốc tọa độ O và bán kính R là x2 + y2 = R2
2. Nhận xét
+) Phương trình đường tròn (x – a)2 + (y – b)2 = R2 có thể viết dưới dạng
x2 + y2 – 2ax – 2by + c = 0
trong đó c = a2 + b2 – R2.
+) Phương trình x2 + y2 – 2ax – 2by + c = 0 là phương trình của đường tròn (C) khi a2 + b2 – c2 > 0. Khi đó, đường tròn (C) có tâm I(a; b), bán kính R =
3. Phương trình tiếp tuyến của đường tròn
Cho đường tròn (C) có tâm I(a; b) và bán kính R.
Đường thẳng Δ là tiếp tuyến với (C) tại điểm Mo(xo; yo).
Ta có
+) Mo(xo; yo) thuộc Δ.
+) = (x0 – a; y0 – b) là vectơ pháp tuyến của Δ.
Do đó Δ có phương trình là
(xo – a).(x – xo) + (yo – b).(y – yo) = 0.
Xem thêm các bài tổng hợp lý thuyết Toán lớp 10 đầy đủ, chi tiết khác:
- Tổng hợp lý thuyết chương Mệnh đề - Tập hợp
- Tổng hợp lý thuyết chương Hàm số bậc nhất và bậc hai
- Tổng hợp lý thuyết chương Phương trình, Hệ phương trình
- Tổng hợp lý thuyết chương Bất đẳng thức. Bất phương trình
- Tổng hợp lý thuyết chương Thống kê
- Tổng hợp lý thuyết chương Cung và góc lượng giác. Công thức lượng giác
- Tổng hợp lý thuyết chương Vectơ
- Tổng hợp lý thuyết chương Tích vô hướng của hai vectơ và ứng dụng
Lời giải bài tập lớp 10 sách mới:
- Giải bài tập Lớp 10 Kết nối tri thức
- Giải bài tập Lớp 10 Chân trời sáng tạo
- Giải bài tập Lớp 10 Cánh diều
- Giải Tiếng Anh 10 Global Success
- Giải Tiếng Anh 10 Friends Global
- Giải sgk Tiếng Anh 10 iLearn Smart World
- Giải sgk Tiếng Anh 10 Explore New Worlds
- Lớp 10 - Kết nối tri thức
- Soạn văn 10 (hay nhất) - KNTT
- Soạn văn 10 (ngắn nhất) - KNTT
- Soạn văn 10 (siêu ngắn) - KNTT
- Giải sgk Toán 10 - KNTT
- Giải sgk Vật lí 10 - KNTT
- Giải sgk Hóa học 10 - KNTT
- Giải sgk Sinh học 10 - KNTT
- Giải sgk Địa lí 10 - KNTT
- Giải sgk Lịch sử 10 - KNTT
- Giải sgk Kinh tế và Pháp luật 10 - KNTT
- Giải sgk Tin học 10 - KNTT
- Giải sgk Công nghệ 10 - KNTT
- Giải sgk Hoạt động trải nghiệm 10 - KNTT
- Giải sgk Giáo dục quốc phòng 10 - KNTT
- Lớp 10 - Chân trời sáng tạo
- Soạn văn 10 (hay nhất) - CTST
- Soạn văn 10 (ngắn nhất) - CTST
- Soạn văn 10 (siêu ngắn) - CTST
- Giải Toán 10 - CTST
- Giải sgk Vật lí 10 - CTST
- Giải sgk Hóa học 10 - CTST
- Giải sgk Sinh học 10 - CTST
- Giải sgk Địa lí 10 - CTST
- Giải sgk Lịch sử 10 - CTST
- Giải sgk Kinh tế và Pháp luật 10 - CTST
- Giải sgk Hoạt động trải nghiệm 10 - CTST
- Lớp 10 - Cánh diều
- Soạn văn 10 (hay nhất) - Cánh diều
- Soạn văn 10 (ngắn nhất) - Cánh diều
- Soạn văn 10 (siêu ngắn) - Cánh diều
- Giải sgk Toán 10 - Cánh diều
- Giải sgk Vật lí 10 - Cánh diều
- Giải sgk Hóa học 10 - Cánh diều
- Giải sgk Sinh học 10 - Cánh diều
- Giải sgk Địa lí 10 - Cánh diều
- Giải sgk Lịch sử 10 - Cánh diều
- Giải sgk Kinh tế và Pháp luật 10 - Cánh diều
- Giải sgk Tin học 10 - Cánh diều
- Giải sgk Công nghệ 10 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 10 - Cánh diều
- Giải sgk Giáo dục quốc phòng 10 - Cánh diều