Các dạng bài tập Phương pháp tọa độ trong mặt phẳng (chọn lọc có lời giải)



Tổng hợp các dạng bài tập Phương pháp tọa độ trong mặt phẳng Toán lớp 10 sách mới Kết nối tri thức, Chân trời sáng tạo, Cánh diều với phương pháp giải chi tiết và bài tập đa dạng giúp học sinh ôn tập, biết cách làm bài tập Phương pháp tọa độ trong mặt phẳng.




Lưu trữ: Các dạng bài tập Phương pháp tọa độ trong mặt phẳng (sách cũ)

Cách tìm vecto pháp tuyến của đường thẳng

Cho đường thẳng d: ax + by + c= 0. Khi đó, một vecto pháp tuyến của đường thẳng d là n( a;b).

Một điểm M(x0; y0) thuộc đường thẳng d nếu: ax0 + by0 + c = 0.

Ví dụ 1: Vectơ pháp tuyến của đường thẳng 2x- 3y+ 7= 0 là :

A. n4 = (2; -3)     B. n2 = (2; 3)     C. n3 = (3; 2)     D. n1 = (-3; 2)

Lời giải

Cho đường thẳng d: ax + by + c= 0. Khi đó; đường thẳng d nhận vecto ( a; b) làm VTPT.

⇒ đường thẳng d nhận vecto n( 2;-3) là VTPT.

Chọn A.

Ví dụ 2. Vectơ nào dưới đây là một vectơ pháp tuyến của đường thẳng song song với trục Ox?

A. n( 1; 1)     B. n( 0; -1)     C. n(1; 0)     D. n( -1; 1)

Lời giải

Đường thẳng song song với Ox có phương trình là : y + m= 0 ( với m ≠ 0) .

Đường thẳng này nhận vecto n( 0; 1) làm VTPT.

Suy ra vecto n'( 0; -1 ) cũng là VTPT của đường thẳng( hai vecto nn' là cùng phương) .

Chọn B.

Ví dụ 3: Vectơ nào dưới đây là một vectơ pháp tuyến của đường thẳng song song với trục Oy?

A. n( 1; 1)     B. n( 0; -1)     C. n(2; 0)     D. n( -1; 1)

Lời giải

Đường thẳng song song với Oy có phương trình là : x + m= 0 ( với m ≠ 0) .

Đường thẳng này nhận vecto n(1;0) làm VTPT.

Suy ra vecto n'( 2; 0 ) cũng là VTPT của đường thẳng( hai vecto nn' là cùng phương) .

Chọn D.

Cách viết phương trình tổng quát của đường thẳng

* Để viết phương trình tổng quát của đường thẳng d ta cần xác định :

   - Điểm A(x0; y0) thuộc d

   - Một vectơ pháp tuyến n( a; b) của d

Khi đó phương trình tổng quát của d là: a(x-x0) + b(y-y0) = 0

* Cho đường thẳng d: ax+ by+ c= 0 nếu đường thẳng d// ∆ thì đường thẳng ∆ có dạng: ax + by + c’ = 0 (c’ ≠ c) .

Ví dụ 1: Đường thẳng đi qua A(1; -2) , nhận n = (1; -2) làm véc tơ pháp tuyến có phương trình là:

A. x - 2y + 1 = 0.    B. 2x + y = 0    C. x - 2y - 5 = 0    D. x - 2y + 5 = 0

Lời giải

Gọi (d) là đường thẳng đi qua A và nhận n = (1; -2) làm VTPT

=> Phương trình đường thẳng (d) : 1(x - 1) - 2(y + 2) = 0 hay x - 2y – 5 = 0

Chọn C.

Ví dụ 2: Viết phương trình tổng quát của đường thẳng ∆ đi qua M(1; -3) và nhận vectơ n(1; 2) làm vectơ pháp tuyến.

A. ∆: x + 2y + 5 = 0    B. ∆: x + 2y – 5 = 0    C. ∆: 2x + y + 1 = 0    D. Đáp án khác

Lời giải

Đường thẳng ∆: qua M( 1; -3) và VTPT n(1; 2)

Vậy phương trình tổng quát của đường thẳng ∆ là 1(x - 1) + 2(y + 3) = 0

Hay x + 2y + 5 = 0

Chọn A.

Ví dụ 3: Cho đường thẳng (d): x-2y + 1= 0 . Nếu đường thẳng (∆) đi qua M(1; -1) và song song với d thì ∆ có phương trình

A. x - 2y - 3 = 0    B. x - 2y + 5 = 0    C. x - 2y +3 = 0    D. x + 2y + 1 = 0

Lời giải

Do đường thẳng ∆// d nên đường thẳng ∆ có dạng x - 2y + c = 0 (c ≠ 1)

Ta lại có M(1; -1) ∈ (∆) ⇒ 1 - 2(-1) + c = 0 ⇔ c = -3

Vậy phương trình ∆: x - 2y - 3 = 0

Chọn A

Viết phương trình đường tròn đi qua 3 điểm

Cho đường tròn ( C) đi qua ba điểm A; B và C. Lập phương trình đường tròn đi qua ba điểm :

+ Bước 1: Gọi phương trình đường tròn là ( C): x2 + y2 - 2ax - 2by + c = 0 (*)

( với điều kiện a2 + b2 - c > 0).

+Bước 2: Do điểm A; B và C thuộc đường tròn nên thay tọa độ điểm A; B và C vào (*) ta được phương trình ba phương trình ẩn a; b; c.

+ Bước 3: giải hệ phương trình ba ẩn a; b; c ta được phương trình đường tròn.

Ví dụ 1: Tâm của đường tròn qua ba điểm A( 2; 1) ; B( 2; 5) và C( -2; 1) thuộc đường thẳng có phương trình

A. x - y + 3 = 0.    B. x + y - 3 = 0    C. x - y - 3 = 0    D. x + y + 3 = 0

Hướng dẫn giải

Phương trình đường tròn (C) có dạng:

x2 + y2 - 2ax – 2by + c = 0 ( a2 + b2 – c > 0)

Viết phương trình đường tròn đi qua 3 điểm (đường tròn ngoại tiếp tam giác) ⇒ I( 0; 3)

Vậy tâm đường tròn là I( 0; 3) .

Lần lượt thay tọa độ I vào các phương trình đường thẳng thì chỉ có đường thẳng

x - y + 3 = 0 thỏa mãn.

Chọn A.

Ví dụ 2. Tìm tọa độ tâm đường tròn đi qua 3 điểm A( 0; 4); B( 2; 4) và C( 4; 0)

A. (0; 0)    B. (1; 0)    C. (3; 2)    D. (1; 1)

Hướng dẫn giải

Phương trình đường tròn (C) có dạng:

x2 + y2 - 2ax – 2by + c = 0 ( a2 + b2 –c > 0)

Do 3 điểm A; B; C thuộc (C) nên Viết phương trình đường tròn đi qua 3 điểm (đường tròn ngoại tiếp tam giác)

Vậy tâm I( 1; 1)

Chọn D.

Ví dụ 3. Tìm bán kính đường tròn đi qua 3 điểm A(0; 4); B(3; 4); C(3; 0).

A. 5    B. 3    C. √6,25    D. √8

Hướng dẫn giải

Phương trình đường tròn (C) có dạng:

x2 + y2 - 2ax – 2by + c = 0 ( a2 + b2 – c > 0)

Do 3 điểm A; B; C thuộc (C) nên Viết phương trình đường tròn đi qua 3 điểm (đường tròn ngoại tiếp tam giác)

Vậy bán kính R = Viết phương trình đường tròn đi qua 3 điểm (đường tròn ngoại tiếp tam giác) = √6,25.

Chọn C.

Xem thêm các dạng bài tập Toán 10 hay, chi tiết khác:

Lời giải bài tập lớp 10 sách mới:




Giải bài tập lớp 10 sách mới các môn học