Các dạng bài tập Phương pháp tọa độ trong mặt phẳng (chọn lọc có lời giải)
Tổng hợp các dạng bài tập Phương pháp tọa độ trong mặt phẳng Toán lớp 10 sách mới Kết nối tri thức, Chân trời sáng tạo, Cánh diều với phương pháp giải chi tiết và bài tập đa dạng giúp học sinh ôn tập, biết cách làm bài tập Phương pháp tọa độ trong mặt phẳng.
Xác định vectơ chỉ phương, vectơ pháp tuyến của đường thẳng, hệ số góc của đường thẳng
Viết phương trình đường thẳng khi biết VTPT hoặc VTCP hoặc hệ số góc và 1 điểm đi qua
Viết phương trình cạnh, đường cao, trung tuyến, phân giác của tam giác
Lưu trữ: Các dạng bài tập Phương pháp tọa độ trong mặt phẳng (sách cũ)
- Lý thuyết Phương trình đường thẳng Xem chi tiết
- Lý thuyết Phương trình đường tròn Xem chi tiết
- Lý thuyết Phương trình đường elip Xem chi tiết
- Lý thuyết Tổng hợp chương Phương pháp tọa độ trong mặt phẳng Xem chi tiết
- Hệ trục tọa độ trong mặt phẳng và cách giải bài tập
- Phương trình đường thẳng và cách giải bài tập
- Phương trình đường tròn và cách giải bài tập
- Phương trình đường elip và cách giải bài tập
- Các công thức về phương trình đường thẳng Xem chi tiết
- Cách tìm vecto pháp tuyến của đường thẳng Xem chi tiết
- Viết phương trình tổng quát của đường thẳng Xem chi tiết
- Viết phương trình đoạn chắn của đường thẳng Xem chi tiết
- Viết phương trình đường thẳng khi biết hệ số góc Xem chi tiết
- Xác định vị trí tương đối của hai đường thẳng Xem chi tiết
- Viết phương trình đường trung trực của đoạn thẳng Xem chi tiết
- Tìm hình chiếu vuông góc của điểm lên đường thẳng Xem chi tiết
- Tìm điểm đối xứng của một điểm qua đường thẳng Xem chi tiết
- Cách tìm vecto chỉ phương của đường thẳng Xem chi tiết
- Viết phương trình tham số, phương trình chính tắc của đường thẳng Xem chi tiết
- Cách chuyển dạng phương trình đường thẳng: tổng quát sang tham số, chính tắc Xem chi tiết
- Viết phương trình đường thẳng đi qua 1 điểm và song song (vuông góc) với 1 đường thẳng Xem chi tiết
- Xác định vị trí tương đối giữa 2 đường thẳng Xem chi tiết
- Tìm hình chiếu của 1 điểm lên đường thẳng Xem chi tiết
- Tìm điểm đối xứng của 1 điểm qua đường thẳng Xem chi tiết
- Viết phương trình đường thẳng thỏa mãn điều kiện cho trước Xem chi tiết
- Tìm điểm thuộc đường thẳng thỏa mãn điều kiện cho trước Xem chi tiết
- Viết phương trình đường thẳng d’ đối xứng với đường thẳng d qua 1 điểm Xem chi tiết
- Các bài toán cực trị liên quan đến đường thẳng Xem chi tiết
- Tính khoảng cách từ một điểm đến một đường thẳng Xem chi tiết
- Tìm điểm thuộc đường thẳng có độ dài thỏa mãn điều kiện Xem chi tiết
- Tìm khoảng cách giữa hai đường thẳng song song Xem chi tiết
- Vị trí tương đối của 2 điểm với đường thẳng: cùng phía, khác phía Xem chi tiết
- Cách xác định góc giữa hai đường thẳng Xem chi tiết
- Viết phương trình đường thẳng d đi qua M và tạo với d’ một góc Xem chi tiết
- Viết phương trình đường phân giác của góc tạo bởi hai đường thẳng Xem chi tiết
- Cách nhận dạng, xác định phương trình đường tròn: tìm tâm, bán kính Xem chi tiết
- Viết phương trình đường tròn biết tâm, bán kính, đường kính Xem chi tiết
- Đường tròn tiếp xúc với đường thẳng Xem chi tiết
- Viết phương trình đường tròn đi qua 3 điểm (đường tròn ngoại tiếp tam giác) Xem chi tiết
- Viết phương trình tiếp tuyến của đường tròn tại 1 điểm, đi qua 1 điểm Xem chi tiết
- Vị trí tương đối của hai đường tròn, của đường thẳng và đường tròn Xem chi tiết
- Lập phương trình đường tròn thỏa mãn điều kiện cho trước Xem chi tiết
- Viết phương trình đường tròn C’ đối xứng với đường tròn C qua 1 điểm, 1 đường thẳng Xem chi tiết
- Các dạng bài tập khác về đường tròn trong mặt phẳng Xem chi tiết
- Tìm tiêu điểm, tiêu cự, tâm sai, trục lớn, trục nhỏ của Elip Xem chi tiết
- Viết phương trình chính tắc của Elip Xem chi tiết
- Lập phương trình Elip đi qua 2 điểm hoặc qua 1 điểm thỏa mãn điều kiện Xem chi tiết
- Tìm giao điểm của đường thẳng và Elip Xem chi tiết
- Các dạng bài tập khác về đường Elip Xem chi tiết
Cách tìm vecto pháp tuyến của đường thẳng
Cho đường thẳng d: ax + by + c= 0. Khi đó, một vecto pháp tuyến của đường thẳng d là n→( a;b).
Một điểm M(x0; y0) thuộc đường thẳng d nếu: ax0 + by0 + c = 0.
Ví dụ 1: Vectơ pháp tuyến của đường thẳng 2x- 3y+ 7= 0 là :
A. n4→ = (2; -3) B. n2→ = (2; 3) C. n3→ = (3; 2) D. n1→ = (-3; 2)
Lời giải
Cho đường thẳng d: ax + by + c= 0. Khi đó; đường thẳng d nhận vecto ( a; b) làm VTPT.
⇒ đường thẳng d nhận vecto n→( 2;-3) là VTPT.
Chọn A.
Ví dụ 2. Vectơ nào dưới đây là một vectơ pháp tuyến của đường thẳng song song với trục Ox?
A. n→( 1; 1) B. n→( 0; -1) C. n→(1; 0) D. n→( -1; 1)
Lời giải
Đường thẳng song song với Ox có phương trình là : y + m= 0 ( với m ≠ 0) .
Đường thẳng này nhận vecto n→( 0; 1) làm VTPT.
Suy ra vecto n'→( 0; -1 ) cũng là VTPT của đường thẳng( hai vecto n→ và n'→ là cùng phương) .
Chọn B.
Ví dụ 3: Vectơ nào dưới đây là một vectơ pháp tuyến của đường thẳng song song với trục Oy?
A. n→( 1; 1) B. n→( 0; -1) C. n→(2; 0) D. n→( -1; 1)
Lời giải
Đường thẳng song song với Oy có phương trình là : x + m= 0 ( với m ≠ 0) .
Đường thẳng này nhận vecto n→(1;0) làm VTPT.
Suy ra vecto n'→( 2; 0 ) cũng là VTPT của đường thẳng( hai vecto n→ và n'→ là cùng phương) .
Chọn D.
Cách viết phương trình tổng quát của đường thẳng
* Để viết phương trình tổng quát của đường thẳng d ta cần xác định :
- Điểm A(x0; y0) thuộc d
- Một vectơ pháp tuyến n→( a; b) của d
Khi đó phương trình tổng quát của d là: a(x-x0) + b(y-y0) = 0
* Cho đường thẳng d: ax+ by+ c= 0 nếu đường thẳng d// ∆ thì đường thẳng ∆ có dạng: ax + by + c’ = 0 (c’ ≠ c) .
Ví dụ 1: Đường thẳng đi qua A(1; -2) , nhận n→ = (1; -2) làm véc tơ pháp tuyến có phương trình là:
A. x - 2y + 1 = 0. B. 2x + y = 0 C. x - 2y - 5 = 0 D. x - 2y + 5 = 0
Lời giải
Gọi (d) là đường thẳng đi qua A và nhận n→ = (1; -2) làm VTPT
=> Phương trình đường thẳng (d) : 1(x - 1) - 2(y + 2) = 0 hay x - 2y – 5 = 0
Chọn C.
Ví dụ 2: Viết phương trình tổng quát của đường thẳng ∆ đi qua M(1; -3) và nhận vectơ n→(1; 2) làm vectơ pháp tuyến.
A. ∆: x + 2y + 5 = 0 B. ∆: x + 2y – 5 = 0 C. ∆: 2x + y + 1 = 0 D. Đáp án khác
Lời giải
Đường thẳng ∆: qua M( 1; -3) và VTPT n→(1; 2)
Vậy phương trình tổng quát của đường thẳng ∆ là 1(x - 1) + 2(y + 3) = 0
Hay x + 2y + 5 = 0
Chọn A.
Ví dụ 3: Cho đường thẳng (d): x-2y + 1= 0 . Nếu đường thẳng (∆) đi qua M(1; -1) và song song với d thì ∆ có phương trình
A. x - 2y - 3 = 0 B. x - 2y + 5 = 0 C. x - 2y +3 = 0 D. x + 2y + 1 = 0
Lời giải
Do đường thẳng ∆// d nên đường thẳng ∆ có dạng x - 2y + c = 0 (c ≠ 1)
Ta lại có M(1; -1) ∈ (∆) ⇒ 1 - 2(-1) + c = 0 ⇔ c = -3
Vậy phương trình ∆: x - 2y - 3 = 0
Chọn A
Viết phương trình đường tròn đi qua 3 điểm
Cho đường tròn ( C) đi qua ba điểm A; B và C. Lập phương trình đường tròn đi qua ba điểm :
+ Bước 1: Gọi phương trình đường tròn là ( C): x2 + y2 - 2ax - 2by + c = 0 (*)
( với điều kiện a2 + b2 - c > 0).
+Bước 2: Do điểm A; B và C thuộc đường tròn nên thay tọa độ điểm A; B và C vào (*) ta được phương trình ba phương trình ẩn a; b; c.
+ Bước 3: giải hệ phương trình ba ẩn a; b; c ta được phương trình đường tròn.
Ví dụ 1: Tâm của đường tròn qua ba điểm A( 2; 1) ; B( 2; 5) và C( -2; 1) thuộc đường thẳng có phương trình
A. x - y + 3 = 0. B. x + y - 3 = 0 C. x - y - 3 = 0 D. x + y + 3 = 0
Hướng dẫn giải
Phương trình đường tròn (C) có dạng:
x2 + y2 - 2ax – 2by + c = 0 ( a2 + b2 – c > 0)
⇒ I( 0; 3)
Vậy tâm đường tròn là I( 0; 3) .
Lần lượt thay tọa độ I vào các phương trình đường thẳng thì chỉ có đường thẳng
x - y + 3 = 0 thỏa mãn.
Chọn A.
Ví dụ 2. Tìm tọa độ tâm đường tròn đi qua 3 điểm A( 0; 4); B( 2; 4) và C( 4; 0)
A. (0; 0) B. (1; 0) C. (3; 2) D. (1; 1)
Hướng dẫn giải
Phương trình đường tròn (C) có dạng:
x2 + y2 - 2ax – 2by + c = 0 ( a2 + b2 –c > 0)
Do 3 điểm A; B; C thuộc (C) nên
Vậy tâm I( 1; 1)
Chọn D.
Ví dụ 3. Tìm bán kính đường tròn đi qua 3 điểm A(0; 4); B(3; 4); C(3; 0).
A. 5 B. 3 C. √6,25 D. √8
Hướng dẫn giải
Phương trình đường tròn (C) có dạng:
x2 + y2 - 2ax – 2by + c = 0 ( a2 + b2 – c > 0)
Do 3 điểm A; B; C thuộc (C) nên
Vậy bán kính R = = √6,25.
Chọn C.
Xem thêm các dạng bài tập Toán 10 hay, chi tiết khác:
- Các dạng bài tập Mệnh đề và tập hợp
- Các dạng bài tập Bất phương trình và hệ bất phương trình bậc nhất hai ẩn
- Các dạng bài tập Hàm số bậc hai và đồ thị
- Các dạng bài tập Hệ thức lượng trong tam giác
- Các dạng bài tập Vectơ
- Các dạng bài tập Thống kê
- Các dạng bài tập Hàm số, đồ thị và ứng dụng
- Các dạng bài tập Đại số tổ hợp
- Các dạng bài tập tính xác suất
Lời giải bài tập lớp 10 sách mới:
- Giải bài tập Lớp 10 Kết nối tri thức
- Giải bài tập Lớp 10 Chân trời sáng tạo
- Giải bài tập Lớp 10 Cánh diều
- Giải Tiếng Anh 10 Global Success
- Giải Tiếng Anh 10 Friends Global
- Giải sgk Tiếng Anh 10 iLearn Smart World
- Giải sgk Tiếng Anh 10 Explore New Worlds
- Lớp 10 - Kết nối tri thức
- Soạn văn 10 (hay nhất) - KNTT
- Soạn văn 10 (ngắn nhất) - KNTT
- Soạn văn 10 (siêu ngắn) - KNTT
- Giải sgk Toán 10 - KNTT
- Giải sgk Vật lí 10 - KNTT
- Giải sgk Hóa học 10 - KNTT
- Giải sgk Sinh học 10 - KNTT
- Giải sgk Địa lí 10 - KNTT
- Giải sgk Lịch sử 10 - KNTT
- Giải sgk Kinh tế và Pháp luật 10 - KNTT
- Giải sgk Tin học 10 - KNTT
- Giải sgk Công nghệ 10 - KNTT
- Giải sgk Hoạt động trải nghiệm 10 - KNTT
- Giải sgk Giáo dục quốc phòng 10 - KNTT
- Lớp 10 - Chân trời sáng tạo
- Soạn văn 10 (hay nhất) - CTST
- Soạn văn 10 (ngắn nhất) - CTST
- Soạn văn 10 (siêu ngắn) - CTST
- Giải Toán 10 - CTST
- Giải sgk Vật lí 10 - CTST
- Giải sgk Hóa học 10 - CTST
- Giải sgk Sinh học 10 - CTST
- Giải sgk Địa lí 10 - CTST
- Giải sgk Lịch sử 10 - CTST
- Giải sgk Kinh tế và Pháp luật 10 - CTST
- Giải sgk Hoạt động trải nghiệm 10 - CTST
- Lớp 10 - Cánh diều
- Soạn văn 10 (hay nhất) - Cánh diều
- Soạn văn 10 (ngắn nhất) - Cánh diều
- Soạn văn 10 (siêu ngắn) - Cánh diều
- Giải sgk Toán 10 - Cánh diều
- Giải sgk Vật lí 10 - Cánh diều
- Giải sgk Hóa học 10 - Cánh diều
- Giải sgk Sinh học 10 - Cánh diều
- Giải sgk Địa lí 10 - Cánh diều
- Giải sgk Lịch sử 10 - Cánh diều
- Giải sgk Kinh tế và Pháp luật 10 - Cánh diều
- Giải sgk Tin học 10 - Cánh diều
- Giải sgk Công nghệ 10 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 10 - Cánh diều
- Giải sgk Giáo dục quốc phòng 10 - Cánh diều