Tìm khoảng cách giữa hai đường thẳng song song



Bài viết Tìm khoảng cách giữa hai đường thẳng song song với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Tìm khoảng cách giữa hai đường thẳng song song.

Cho hai đường thẳng (d) và (d’) song song với nhau. Khoảng cách hai đường thẳng này bằng khoảng cách từ một điểm bất kì của đường thẳng này đến đường thẳng kia.

d( d; d’) = d( A; d’) trong đó A là một điểm thuộc đường thẳng d.

⇒ Để tính khoảng cách hai đường thẳng song song ta cần:

+ Đưa phương trình hai đường thẳng về dạng tổng quát.

+ Lấy một điểm A bất kì thuộc đường thẳng d.

+ Tính khoảng cách từ điểm A đến đường thẳng d’ .

+ Kết luận: d( d; d’) = d( A; d’) .

Ví dụ 1: Khoảng cách giữa hai đường thẳng ∆: 6x - 8y - 101 = 0 và d: 3x - 4y = 0 là:

A. 10, 1    B. 1,01    C. 12    D. √101 .

Hướng dẫn giải

+ Ta có: Tìm khoảng cách giữa hai đường thẳng song song

⇒ Hai đường thẳng đã cho song song với nhau: d // ∆.

+ Lấy điểm O( 0;0) thuộc đường thẳng d.

+ Do hai đường thẳng d và ∆ song song với nhau nên

d(∆; d) = d ( O; ∆) = Tìm khoảng cách giữa hai đường thẳng song song = 10,1

Chọn A.

Ví dụ 2. Tính khoảng cách giữa hai đường thẳng d: 7x + y - 3 = 0 và ∆: Tìm khoảng cách giữa hai đường thẳng song song .

A. Tìm khoảng cách giữa hai đường thẳng song song    B. 15    C. 9    D. Tìm khoảng cách giữa hai đường thẳng song song

Lời giải

+ Ta đưa đường thẳng ∆ về dạng tổng quát:

∆: Tìm khoảng cách giữa hai đường thẳng song song

⇒ Phương trình ∆: 7( x + 2) + 1( y - 2) = 0 hay 7x + y + 12 = 0

Ta có: Tìm khoảng cách giữa hai đường thẳng song song nên d // ∆

⇒ d(d;Δ) = d(A;d) = Tìm khoảng cách giữa hai đường thẳng song song

Chọn A.

Ví dụ 3. Tập hợp các điểm cách đường thẳng ∆: 3x - 4y + 2 = 0 một khoảng bằng 2 là hai đường thẳng có phương trình nào sau đây?

A. 3x - 4y + 8 = 0 hoặc 3x - 4y + 12 = 0.    B. 3x - 4y - 8 = 0 hoặc 3x - 4y + 12 = 0.

C. 3x - 4y - 8 = 0 hoặc 3x - 4y - 12 = 0.    D. 3x - 4y + 8 = 0 hoặc 3x - 4y - 12 = 0.

Lời giải

Gọi điểm M (x ; y) là điểm cách đường thẳng ∆ một khoảng bằng 2. Suy ra :

d(M(x; y); Δ) = 2 ⇔ Tìm khoảng cách giữa hai đường thẳng song song = 2

|3x - 4y + 2| = 10 ⇒ Tìm khoảng cách giữa hai đường thẳng song song

Vậy tập hợp các điểm cách ∆ một khoảng bằng 2 là hai đường thẳng :

3x - 4y + 12 = 0 và 3x - 4y - 8 = 0

Chọn B.

Ví dụ 4. Trong mặt phẳng với hệ tọa độ Oxy, cho hai đường thẳng d1: 5x + 3y - 3 = 0 và d2: 5x + 3y + 7 = 0 song song nhau. Đường thẳng d vừa song song và cách đều với d1; d2 là:

A. 5x + 3y - 2 = 0    B. 5x + 3y + 4 = 0    C. 5x + 3y + 2 = 0    D. 5x + 3y - 4 = 0

Lời giải

Lấy điểm M ( x; y) thuộc đường thẳng d. Suy ra:

d(M(x; y); d1)=d(M(x; y); d2) ⇔ Tìm khoảng cách giữa hai đường thẳng song song

Tìm khoảng cách giữa hai đường thẳng song song

Đường thẳng d: 5x + 3y + 2 song song với hai đường thẳng d1 và d2.

Vậy đường thẳng d thỏa mãn là: 5x + 3y + 2 = 0

Chọn C.

Ví dụ 5: Cho đường thẳng d: Tìm khoảng cách giữa hai đường thẳng song song và đường thẳng ∆: Tìm khoảng cách giữa hai đường thẳng song song . Tính khoảng cách hai đường thẳng này.

A. 1    B. 0.    C. 2    D. 3

Lời giải

+ Đường thẳng d: Tìm khoảng cách giữa hai đường thẳng song song

⇒ Phương trình d: 3(x - 2) – 2(y + 1) = 0 hay 3x - 2y - 8 = 0

+ Đường thẳng ∆: Tìm khoảng cách giữa hai đường thẳng song song

⇒ Phương trình ∆: 3(x - 0) – 2(y + 4) = 0 hay 3x - 2y - 8 = 0

⇒ hai đường thẳng này trùng nhau nên khoảng cách hai đường thẳng này là 0.

Chọn B.

Ví dụ 6: Cho hai đường thẳng d: x + y - 2 = 0 và đường thẳng ∆: Tìm khoảng cách giữa hai đường thẳng song song . Viết phương trình đường thẳng d’// d sao cho khoảng cách hai đường thẳng d’ và ∆ là √2.

A. x + y - 1 = 0    B. x + y + 1= 0    C. x + y - 3 = 0    D. Cả B và C đúng.

Lời giải

+ Do đường thẳng d’// d nên đường thẳng d có dạng (d’) : x + y + c = 0( c ≠ -2)

+ Đường thẳng ∆: Tìm khoảng cách giữa hai đường thẳng song song

⇒ Phương trình ∆: 1(x + 2) + 1(y - 3) = 0 hay x + y - 1 = 0.

+ Lấy điểm M ( 1; 0) thuộc ∆.

Để khoảng cách hai đường thẳng d’ và ∆ bằng 2 khi và chỉ khi:

d( d’; ∆) = d( M; d’) = 2

Tìm khoảng cách giữa hai đường thẳng song song = √2 ⇔ |1 + c| = 2

Tìm khoảng cách giữa hai đường thẳng song song

Vậy có hai đường thẳng thỏa mãn là : x + y + 1 = 0 và x + y - 3 = 0

Chọn D.

Ví dụ 7: Cho tam giác ABC có B( 1; -2) và C( 0; 1). Điểm A thuộc đường thẳng
d: 3x+ y= 0 .Tính diện tích tam giác ABC.

A. 1    B. 3    C. 0,5    D. 2

Lời giải

+ Phương trình đường thẳng BC:

Tìm khoảng cách giữa hai đường thẳng song song

⇒ Phương trình BC: 3(x - 1) + 1(y + 2) = 0 hay 3x + y - 1 = 0 .

+ ta có; BC = Tìm khoảng cách giữa hai đường thẳng song song = √10

+ Xét vị trí tương đối giữa đường thẳng d và BC:

Ta có: Tìm khoảng cách giữa hai đường thẳng song song ⇒ d // BC.

Mà điểm A thuộc d nên d( A; BC) = d( d; BC) . (1)

+ Ta tính khoảng cách hai đường thẳng d và BC.

Lấy điểm O(0; 0) thuộc d.

⇒ d(d; BC) = d(O;BC) = Tìm khoảng cách giữa hai đường thẳng song song = Tìm khoảng cách giữa hai đường thẳng song song ( 2)

Từ ( 1) và ( 2) suy ra d( A; BC) = Tìm khoảng cách giữa hai đường thẳng song song .

+ Diện tích tam giác ABC là S = Tìm khoảng cách giữa hai đường thẳng song song d( A,BC).BC = Tìm khoảng cách giữa hai đường thẳng song song .Tìm khoảng cách giữa hai đường thẳng song song .√10 = 0, 5

Chọn C.

Câu 1: Cho hai đường thẳng d: x + y - 4 = 0 và đường thẳng ∆: Tìm khoảng cách giữa hai đường thẳng song song . Tính khoảng cách giữa hai đường thẳng này?

A. 1    B. 2    C. √2    D. Đáp án khác

Lời giải:

Đáp án: C

+Đường thẳng ∆: Tìm khoảng cách giữa hai đường thẳng song song

⇒ Phương trình đường thẳng ∆: 1( x - 1) + 1( y - 1) = 0 hay x + y - 2 = 0.

+ Ta có: Tìm khoảng cách giữa hai đường thẳng song song nên hai đường thẳng d//∆.

+ Lấy điểm A( 1; 1) thuộc ∆. Do d // ∆ nên :

d(d; ∆) = d(A; d) = Tìm khoảng cách giữa hai đường thẳng song song = √2

Câu 2: Cho đường thẳng d: x - 2y + 2 = 0 . Phương trình các đường thẳng song song với d và cách d một đoạn bằng √5 là

A. x - 2y - 3 = 0; x - 2y + 7 = 0    B. x - 2y + 3 = 0 và x - 2y + 7 = 0

C. x - 2y - 3 = 0; x - 2y - 7 = 0    D. x - 2y + 3 = 0; x - 2y - 7 = 0 .

Lời giải:

Đáp án: A

+ Gọi ∆ là đường thẳng song song với d: x - 2y + 2 = 0

⇒ Đường thẳng ∆ có dạng: x - 2y + c = 0 ( c ≠ 2 ) .

+ Lấy một điểm A( -2 ; 0) thuộc d.

⇒ d( d ; ∆) = d( A ; ∆) = √5

Tìm khoảng cách giữa hai đường thẳng song song = √5 ⇔ |c - 2| = 5 nên Tìm khoảng cách giữa hai đường thẳng song song

+ Vậy có hai đường thẳng thỏa mãn là x - 2y + 7 = 0 hoặc x - 2y - 3 = 0.

Câu 3: Cho đường thẳng d: 3x + 4y + 1 = 0. Có 2 đường thẳng d1 và d2 cùng song song với d và cách d một khoảng bằng 1. Hai đường thẳng đó có phương trình là:

A. 3x + 4y - 7 = 0; 3x - 4y + 3 = 0.    B. 3x - 4y + 7 = 0; 3x - 4y - 3 = 0

C. 3x + 4y + 4 = 0; 3x + 4y + 3 = 0.    D. 3x + 4y - 4 = 0; 3x + 4y + 6 = 0 .

Lời giải:

Đáp án: D

+ Do đường thẳng song song với d nên ∆ có dạng là : ∆ : 3x + 4y + c = 0 ( c ≠ 1) .

Lấy điểm M(-3 ; 2) thuộc d

Do d(d ; ∆) = d( M ; ∆) =1 ⇔ Tìm khoảng cách giữa hai đường thẳng song song = 1

⇔ |c - 1| = 5 ⇔ Tìm khoảng cách giữa hai đường thẳng song song

Vậy có hai đường thẳng thỏa mãn là : 3x + 4y + 6 = 0 hoặc 3x + 4y - 4 = 0

Câu 4: Khoảng cách giữa 2 đường thẳng (a): 7x + y - 3 = 0 và (b): 7x + y + 12 = 0 là

A. Tìm khoảng cách giữa hai đường thẳng song song    B. 9.    C. Tìm khoảng cách giữa hai đường thẳng song song    D. 15.

Lời giải:

Đáp án: C

Ta có : Tìm khoảng cách giữa hai đường thẳng song song nên a // b

Lây điểm M (0 ; 3) thuộc( a) .

Do a // b nên d(M ; b) = d( a ; b) = Tìm khoảng cách giữa hai đường thẳng song song

Câu 5: Cho đường thẳng d: 3x - 4y + 2 = 0. Có đường thẳng a và b cùng song song với d và cách d một khoảng bằng 1. Hai đường thẳng đó có phương trình là:

A. 3x + 4y - 1 = 0 ; 3x + 4y + 5 = 0    B. 3x - 4y + 7 = 0 ; 3x - 4y - 3 = 0

C. 3x + 4y - 3 = 0 ; 3x + 4y + 7 = 0    D. 3x - 4y + 6 = 0; 3x - 4y - 4 = 0

Lời giải:

Đáp án: B

Giả sử đường thẳng ∆ song song với d : 3x - 4y + 2 = 0

Khi đó ; ∆ có phương trình là ∆ : 3x - 4y + C = 0.

Lấy điểm M( -2 ; -1) thuộc d.

Do d(d; ∆) = 1 ⇔ Tìm khoảng cách giữa hai đường thẳng song song = 1 ⇔ |C - 2| = 5 ⇔ Tìm khoảng cách giữa hai đường thẳng song song

Do đó hai đường thẳng thỏa mãn là : 3x - 4y + 7 = 0 và 3x - 4y - 3 = 0.

Câu 6: Cho đường thẳng d: 2x - 3y + 6 = 0 và đường thẳng ∆: 4x - 6y + 20 = 0. Viết phương trình đường thẳng d’ // d sao cho khoảng cách hai đường thẳng d’ và ∆ là √13

A. 2x - 3y + 23 = 0    B. 2x - 3y - 3 = 0.

C. 2x - 3y – 8 = 0 và 2x - 3y = 0    D. Cả A và B đúng

Lời giải:

Đáp án: D

+ Ta có đường thẳng d’// d nên đường thẳng d’ có dạng : 2x - 3y + c = 0 ( c ≠ 6)

+ Xét vị trí của hai đường thẳng d và ∆: Tìm khoảng cách giữa hai đường thẳng song song

⇒ Hai đường thẳng d và ∆ song song với nhau .

Mà d // d’ nên d’ // ∆.

+ Lấy điểm A( -5; 0) thuộc ∆.

+ Do d’ // ∆ nên d( d’; ∆) = d( A; d’) = √13

Tìm khoảng cách giữa hai đường thẳng song song = √13 ⇔ Tìm khoảng cách giữa hai đường thẳng song song

Tìm khoảng cách giữa hai đường thẳng song song

Vậy có hai đường thẳng thỏa mãn là 2x - 3y + 23 = 0 và 2x - 3y - 3 = 0.

Câu 7: Cho tam giác ABC có B( - 2; 1) và C( 2; 0). Điểm A thuộc đường thẳng
d: x+ 4y- 10= 0 .Tính diện tích tam giác ABC.

A. 1    B. 3    C. 0,5    D. 2

Lời giải:

Đáp án: A

+ Phương trình đường thẳng BC:

Tìm khoảng cách giữa hai đường thẳng song song

⇒ Phương trình BC: 1( x + 2) + 4( y - 1) = 0 hay x + 4y - 2 = 0 .

+ ta có; BC = Tìm khoảng cách giữa hai đường thẳng song song = √17

+ Xét vị trí tương đối giữa đường thẳng d và BC:

Ta có: Tìm khoảng cách giữa hai đường thẳng song song ⇒ d // BC.

Mà điểm A thuộc d nên d( A; BC) = d( d; BC) . (1)

+ Ta tính khoảng cách hai đường thẳng d và BC.

Lấy điểm H( 10; 0) thuộc d.

⇒ d(d; BC) = d(H;BC) = Tìm khoảng cách giữa hai đường thẳng song song = Tìm khoảng cách giữa hai đường thẳng song song ( 2)

Từ ( 1) và ( 2) suy ra d( A; BC) = Tìm khoảng cách giữa hai đường thẳng song song

+ Diện tích tam giác ABC là S = Tìm khoảng cách giữa hai đường thẳng song song d( A,BC).BC = Tìm khoảng cách giữa hai đường thẳng song song . Tìm khoảng cách giữa hai đường thẳng song song .√17= 1

Bài 1. Tính khoảng cách giữa hai đường thẳng ∆: 3x – 5y – 10 = 0 và d: 6x – 10y = 0.

Bài 2. Tìm đường thẳng song song và cách đường thẳng d: 2x + 3y – 6 = 0 một khoảng bẳng 3.

Bài 3. Trong mặt phẳng với hệ tọa độ Oxy, cho hai đường thẳng d1: 3x + 6y – 5 = 0 và d2: 3x + 6y + 7 = 0 song song nhau. Tìm đường thẳng d vừa song song và cách đều với d1; d2.

Bài 4. Cho đường thẳng d: {x = 1 + 2t; y = 3 – 2t}. Tìm phương trình đường thẳng song song với d và cách d một khoảng bằng 5.

Bài 5. Cho đường thẳng d: 2x + 3y + 5 = 0. Có 2 đường thẳng d1 và d2 cùng song song với d và cách d một khoảng bằng 3. Tìm phương trình hai đường thẳng đó.

Xem thêm các dạng bài tập Toán 10 có đáp án hay khác:

Lời giải bài tập lớp 10 sách mới:


phuong-phap-toa-do-trong-mat-phang.jsp


Giải bài tập lớp 10 sách mới các môn học