Lý thuyết tổng hợp chương Phương pháp tọa độ trong mặt phẳng lớp 10 (hay, chi tiết)
Bài viết Lý thuyết tổng hợp chương Phương pháp tọa độ trong mặt phẳng lớp 10 hay, chi tiết giúp bạn nắm vững kiến thức trọng tâm Lý thuyết tổng hợp chương Phương pháp tọa độ trong mặt phẳng.
Vectơ được gọi là vectơ chỉ phương của đường thẳng ∆ nếu ≠ và giá của song song hoặc trùng với ∆.
Nhận xét. Một đường thẳng có vô số vectơ chỉ phương.
Đường thẳng ∆ đi qua điểm M0(x0, y0) và có VTCP = (a; b)
=> phương trình tham số của đường thẳng ∆ có dạng
Nhận xét. Nếu đường thẳng ∆ có VTCP = (a; b)
thì có hệ số góc k =
Vectơ được gọi là vectơ pháp tuyến của đường thẳng ∆ nếu ≠ và vuông góc với vectơ chỉ phương của ∆.
Nhận xét.
+) Một đường thẳng có vô số vectơ pháp tuyến.
Đường thẳng ∆ đi qua điểm M0(x0, y0) và có VTPT = (A; B)
=> phương trình tổng quát của đường thẳng ∆ có dạng
A(x – x0) + B(y – y0) = 0 hay Ax + By + C = 0 với C = –Ax0 – By0.
Nhận xét.
+) Nếu đường thẳng ∆ có VTPT = (A; B) thì có hệ số góc k =
+) Nếu A, B, C đều khác 0 thì ta có thể đưa phương trình tổng quát về dạng
Phương trình này được gọi là phương trình đường thẳng theo đoạn chắn, đường thẳng này cắt Ox và Oy lần lượt tại M(a0; 0) và N(0; b0).
Xét hai đường thẳng có phương trình tổng quát là
∆1: a1x + b1y + c1 = 0 và ∆2: a2x + b2y + c2 = 0
Tọa độ giao điểm của ∆1 và ∆2 là nghiệm của hệ phương trình:
+) Nếu hệ có một nghiệm (x0; y0) thì ∆1 cắt ∆2 tại điểm M0(x0, y0).
+) Nếu hệ có vô số nghiệm thì ∆1 trùng với ∆2.
+) Nếu hệ vô nghiệm thì ∆1 và ∆2 không có điểm chung, hay ∆1 song song với ∆2
Cách 2. Xét tỉ số
Cho hai đường thẳng
∆1: a1x + b1y + c1 = 0 có VTPT = (a1; b1);
∆2: a2x + b2y + c2 = 0 có VTPT = (a2; b2);
Gọi α là góc tạo bởi giữa hai đường thẳng ∆1 và ∆2
Khi đó
Khoảng cách từ M0(x0, y0) đến đường thẳng ∆: ax + by + c = 0 được tính theo công thức
Nhận xét. Cho hai đường thẳng ∆1: a1x + b1y + c1 = 0 và ∆2: a2x + b2y + c2 = 0 cắt nhau thì phương trình hai đường phân giác của góc tạo bởi hai đường thẳng trên là:
Ví dụ minh hoạ
Ví dụ 1: Viết phương trình đường thẳng d đi qua M(–2; 3) và có VTCP .
Hướng dẫn giải:
Đường thẳng (d) đi qua M(–2; 3) và có VTCP nên có phương trình
.
Ví dụ 2: Cho đường thẳng d: 2x – 3y + 6 = 0. Viết phương trình đường thẳng d dưới dạng tham số?
Hướng dẫn giải:
Đường thẳng d đi qua A(–3; 0) và có VTPT nên VTCP .
Vậy phương trình tham số của đường thẳng d: .
Ví dụ 3: Tính khoảng cách từ điểm A(2; 3) đến đường thẳng d: 5x – 3y – 2 = 0.
Hướng dẫn giải:
Khoảng cách từ điểm A(2; 3) đến đường thẳng d: 5x – 3y – 2 = 0 là:
d(A; d) = .
Ví dụ 4: Tính khoảng cách từ điểm O đến đường thẳng d: .
Hướng dẫn giải:
Đường thẳng d: hay .
Khoảng cách từ điểm O đến đường thẳng d: là:
d(O; d) = .
Bài tập tự luyện
Bài 1. Viết phương trình chính tắc của đường thẳng ∆ đi qua M(1; –3) và nhận vectơ làm vectơ chỉ phương.
Hướng dẫn giải:
Đường thẳng ∆ đi qua M(1; –3) và nhận vectơ làm vectơ chỉ phương
Vậy phương trình chính tắc của ∆: .
Bài 2. Cho đường thẳng (d) : . Viết phương trình tổng quát của đường thẳng d.
Hướng dẫn giải:
Đường thẳng d đi qua A(3; 1) và có VTCP nên VTCP .
Do đó, phương trình tổng quát của đường thẳng d:
2(x – 3) + (y – 1) = 0 hay 2x + y – 7 = 0.
Bài 3. Tính khoảng cách từ điểm O đến đường thẳng d: 3x + 2y – 1 = 0.
Hướng dẫn giải:
Khoảng cách từ điểm O đến đường thẳng d: 3x + 2y – 1 = 0 là:
d(O; d) = .
Bài 4. Tính khoảng cách từ điểm A(–5; 2) đến đường thẳng d: 2x –y + 5 = 0.
Hướng dẫn giải:
Khoảng cách từ điểm A(–5; 2) đến đường thẳng d: 2x –y + 5 = 0 là:
d(A; d) = .
Bài 5: Tính khoảng cách từ điểm B(3; –5) đến đường thẳng {x = 2 + 3t; y = 5 – 2t}.
Hướng dẫn giải:
Xét đường thẳng d: {x = 2 + 3t; y = 5 – 2t}
2x + 3y = 2(2 + 3t) + 3(5 – 2t) = 4 + 6t + 15 – 6t = 19
⇔ 2x + 3y -19 = 0
Khoảng cách từ điểm B(3; –5) đến đường thẳng d: 2x + 3y – 19 = 0 là:
d(B; d) = .
Bài 6. Viết phương trình chính tắc của đường thẳng d đi qua hai điểm A(1; – 1) và B(–3; 4).
Bài 7. Cho đường thẳng d: {x = 3 + 2t; y = 4 + 3t}. Viết phương trình tổng quát của đường thẳng d.
Bài 8. Tính khoảng cách từ điểm A(–5; 2) đến đường thẳng d: 2x –y + 5 = 0.
Bài 9. Hai cạnh của hình chữ nhật nằm trên hai đường thẳng (a): 3x – 2y + 1 = 0 và (b) : 4x + 3y – 3 = 0. Biết hình chữ nhật có đỉnh là giao điểm của hai đường thẳng a: 2x – 3y + 2 = 0 và b: 4x + 3y – 3 = 0. Tính diện tích của hình chữ nhật.
Bài 10. Đường tròn (C) có tâm I (–2; –2) và tiếp xúc với đường thẳng d: 5x + 12y – 10 = 0. Tính bán kính R của đường tròn (C).
Xem thêm các dạng bài tập Toán 10 có đáp án hay khác:
- Lý thuyết Phương trình đường thẳng
- Lý thuyết Phương trình đường tròn
- Lý thuyết Phương trình đường elip
Lời giải bài tập lớp 10 sách mới:
- Giải bài tập Lớp 10 Kết nối tri thức
- Giải bài tập Lớp 10 Chân trời sáng tạo
- Giải bài tập Lớp 10 Cánh diều
- Giải Tiếng Anh 10 Global Success
- Giải Tiếng Anh 10 Friends Global
- Giải sgk Tiếng Anh 10 iLearn Smart World
- Giải sgk Tiếng Anh 10 Explore New Worlds
- Lớp 10 - Kết nối tri thức
- Soạn văn 10 (hay nhất) - KNTT
- Soạn văn 10 (ngắn nhất) - KNTT
- Soạn văn 10 (siêu ngắn) - KNTT
- Giải sgk Toán 10 - KNTT
- Giải sgk Vật lí 10 - KNTT
- Giải sgk Hóa học 10 - KNTT
- Giải sgk Sinh học 10 - KNTT
- Giải sgk Địa lí 10 - KNTT
- Giải sgk Lịch sử 10 - KNTT
- Giải sgk Kinh tế và Pháp luật 10 - KNTT
- Giải sgk Tin học 10 - KNTT
- Giải sgk Công nghệ 10 - KNTT
- Giải sgk Hoạt động trải nghiệm 10 - KNTT
- Giải sgk Giáo dục quốc phòng 10 - KNTT
- Lớp 10 - Chân trời sáng tạo
- Soạn văn 10 (hay nhất) - CTST
- Soạn văn 10 (ngắn nhất) - CTST
- Soạn văn 10 (siêu ngắn) - CTST
- Giải Toán 10 - CTST
- Giải sgk Vật lí 10 - CTST
- Giải sgk Hóa học 10 - CTST
- Giải sgk Sinh học 10 - CTST
- Giải sgk Địa lí 10 - CTST
- Giải sgk Lịch sử 10 - CTST
- Giải sgk Kinh tế và Pháp luật 10 - CTST
- Giải sgk Hoạt động trải nghiệm 10 - CTST
- Lớp 10 - Cánh diều
- Soạn văn 10 (hay nhất) - Cánh diều
- Soạn văn 10 (ngắn nhất) - Cánh diều
- Soạn văn 10 (siêu ngắn) - Cánh diều
- Giải sgk Toán 10 - Cánh diều
- Giải sgk Vật lí 10 - Cánh diều
- Giải sgk Hóa học 10 - Cánh diều
- Giải sgk Sinh học 10 - Cánh diều
- Giải sgk Địa lí 10 - Cánh diều
- Giải sgk Lịch sử 10 - Cánh diều
- Giải sgk Kinh tế và Pháp luật 10 - Cánh diều
- Giải sgk Tin học 10 - Cánh diều
- Giải sgk Công nghệ 10 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 10 - Cánh diều
- Giải sgk Giáo dục quốc phòng 10 - Cánh diều