Cách tìm hình chiếu của 1 điểm lên đường thẳng (cực hay)
Bài viết Cách tìm hình chiếu của 1 điểm lên đường thẳng với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Cách tìm hình chiếu của 1 điểm lên đường thẳng.
Cho trước điểm A(x0; y0) và phương trình đường thẳng d: ax + by + c = 0 có VTPT
n→( a; b). Tìm hình chiếu của điểm A lên đường thẳng d:
+ Bước 1: Gọi H là hình chiếu của A lên đường thẳng d.
+ Bước 2: Lập phương trình tổng quát của AH
AH:
⇒ phương trình AH: b(x - x0) - a(y - y0) = 0
+ Bước 3: AH và d cắt nhau tại H nên tọa độ điểm H là nghiệm hệ phương trình:
Từ hệ phương trình trên ta suy ra tọa độ điểm H.
Ví dụ 1: Cho điểm A( 1; 2) và đường thẳng (d): x + 2y - 3 = 0 .Tìm hình chiếu của A lên đường thẳng d.
A. ( 1; -2) B. (- ; ) C. ( ; ) D. Đáp án khác
Lời giải
+ Gọi H là hình chiếu của A lên đường thẳng (d) .
+ Lập phương trình đường thẳng AH:
(AH) :
⇒ Phương trình ( AH) : 2(x - 1) – 1.( y - 2) = 0 hay 2x - y = 0
+ Hai đường thẳng AH và d cắt nhau tại H nên tọa độ điểm H là nghiệm hệ phương trình:
Chọn C.
Ví dụ 2: Cho điểm A( 2; 0) và đường thẳng d: x + y - 2 = 0. Tìm hình chiếu của điểm A lên đường thẳng d.
A. ( 2; -1) B. (2; 0) C. (1; -2) D. (-2; -1)
Lời giải
Ta có: 2 + 0 - 2 = 0 nên điểm A thuộc đường thẳng d.
⇒ Hình chiếu của điểm A lên đường thẳng d chính là điểm A.
Chọn B.
Ví dụ 3: Cho tam giác ABC có A( 0; -2).Gọi I ( 2; 4) là trung điểm của AB và J( -4; 2) là trung điểm của AC. Gọi hình chiếu của điểm A lên BC là H. Viết phương trình đường thẳng AH?
A. 6x + 2y - 3 = 0 B. 6x + 2y + 4 =0 C. 2x - y + 1 = 0 D. Tất cả sai
Lời giải
+ Do I và J lần lượt là trung điểm của AB và AC nên IJ là đường trung bình của tam giác ABC ⇒ IJ// BC ( 1) .
+ Do H là hình chiếu của A lên BC
⇒ AH vuông góc BC (2).
Từ(1) và ( 2) suy ra: AH vuông góc IJ
+ Lập phương trình AH:
⇒ ( AH): 6(x - 0) + 2( y + 2) = 0 hay 6x + 2y + 4 = 0.
Chọn B.
Ví dụ 4: Toạ độ hình chiếu của M(4; 1) trên đường thẳng ∆: x - 2y + 4 = 0 là:
A. ( 14; -19) B. ( 2; 3) C. ( ; ) D. (- ; )
Lời giải
+ Đường thẳng ∆ có 1 VTPT n→(1; -2)
Gọi H( 2t - 4; t) là hình chiếu của M trên đường thẳng ∆ thì MH→(2t - 8; t - 1)
⇒ Hai vecto MH→ và n→(2; -3) cùng phương nên:
⇒ H( ; )
Chọn C.
Ví dụ 5: Cho đường thẳng ∆: và điểm M(3; 3) . Tọa độ hình chiếu vuông góc của M trên đường thẳng ∆ là:
A. (4; -2) B. (1; 0) C. (-2; 2) D. (7; -4)
Lời giải
Gọi H là hình chiếu của M trên ∆.
Ta có: H ∈ ∆ ⇒ H(1 + 3t; - 2t), MH→ = (- 2 + 3t; - 3 - 2t)
Đường thẳng có vectơ chỉ phương là u→( 3; -2) .
Do H là hình chiếu vuông góc của M trên ∆ nên hai đường thẳng MH và ∆ vuông góc với nhau
⇒ MH→.u→ = 0 ⇔ 3( -2 + 3t ) – 2( -3 - 2t) = 0
⇔ -6 + 9t + 6 + 4t = 0 ⇔ 13t = 0 ⇔ t = 0
⇒ H ( 1; 0)
Chọn B.
Ví dụ 6: Tìm hình chiếu của A( 3;-4) lên đường thẳng d:
A. ( 1; 2) B. (4; -2) C. ( -1; 2) D. ( -1; -3)
Lời giải
+ Lấy điểm H(2 + 2t; -1 - t) thuộc d.
Ta có AH→ = (2t - 1; -t + 3)
Vectơ chỉ phương của d là u→( 2; -1)
+Do H là hình chiếu của A trên d
⇔ AH ⊥ d ⇔ u→.AH→ = 0 ⇔ 2(2t - 1) - (- t + 3) = 0 ⇔ t = 1
+ Với t = 1 ta có H( 4; -2)
Vậy hình chiếu của A trên d là H( 4; -2).
Chọn B.
Ví dụ 7: Cho đường thẳng ∆: . Hoành độ hình chiếu của M( 4; 5) trên ∆ gần nhất với số nào sau đây ?
A. 1,1 B. 1,2 C. 1,3 D. 1,5
Lời giải
Gọi H là hình chiếu của M trên ∆.
Ta có: H ∈ ∆ nên H( 2 - 3t; 1 + 2t) và MH→( -2 - 3t; -4 + 2t)
Đường thẳng ∆có vectơ chỉ phương là u→(3; - 2) .
u→ ⊥ MH→ ⇔ u→.MH→ = 0 ⇔ 3(-2 - 3t) - 2(-4 + 2t) = 0 ⇔ -13t + 2 = 0 ⇔
t =
⇒ H(
;
)
⇒ Hoành độ của điểm H là .
Chọn D.
Ví dụ 8: Cho tam giác BAC có AB = 3; BC = 3√3 và góc B = 300.Gọi H là hình chiếu của A lên BC. Tìm mệnh đề đúng?
A. H nằm trong đoạn BC thỏa mãn: BH = 2 HC
B. AH = .
C. BH = 2.
D. Tất cả sai
Lời giải
+ Áp dụng định lí cosin vào tam giác ABC ta có:
AC2 = AB2 + BC2 – 2.AC.BC.Cos B
= 32 + (3√3 )2 - 2.3.3√3.cos300 = 9
⇒ AC = 3 nên AB = AC = 3
⇒ Tam giác BAC cân tại A.
+ AH là đường cao nên đồng thời là đường trung tuyến
⇒ H là trung điểm của BC: BH = CH =
+ Xét tam giác vuông AHB có: AH = AB.sinB = 3.sin300 = 1,5.
Chọn B.
Câu 1: Cho điểm A( -1; 2) và đường thẳng ∆: . Tìm điểm M trên ∆ sao cho AM ngắn nhất.
A. ( 1; -3) B. ( 1; 3) C. (0; 5) D. (4; 0)
Lời giải:
Đáp án: C
Lấy điểm M ( t - 2; - t - 3) thuộc ∆
⇒ AM =
Ta có: ( t + 2)2 ≥ 0 với mọi t nên 2( t + 2)2 + 18 ≥ 18
⇒ AM =
⇒ AM ngắn nhất là √18 khi và chỉ khi : t + 2 = 0 hay t = 2.
Khi đó tọa độ điểm M( 0 ; 5) .
Câu 2: Toạ độ hình chiếu của M(4; 1) trên đường thẳng d: x - 2y + 4 = 0 là:
A. ( ; ) B. ( ; ) C. ( ; ) D. ( ; )
Lời giải:
Đáp án: C
Đường thẳng d có 1 VTPT n→(1; -2).
Gọi H( 2t - 4; t) là hình chiếu của M( 4; 1) trên đường thẳng d thì MH→(2t – 8; t - 1)
Và n→(1; -2) cùng phương khi và chỉ khi
→ H( ; ).
Câu 3: Cho tam giác ABC có A(1; 3).Gọi I(2; 1) là trung điểm của AB và J( -1; 0) là trung điểm của AC. Gọi hình chiếu của điểm A lên BC là H ( x; y). Tính x + 2y?
A. 0 B. - 1 C. 2 D. 3
Lời giải:
Đáp án: A
+ Do I và J lần lượt là trung điểm của AB và AC nên IJ là đường trung bình của tam giác ABC ⇒ IJ// BC ( 1) .
+ Do H là hình chiếu của A lên BC
⇒ AH vuông góc BC (2).
Từ(1) và ( 2) suy ra: AH vuông góc IJ
+ Lập phương trình AH:
⇒ ( AH): - 3( x - 1) – 1( y - 3) = 0 hay 3x + y - 6 = 0.
+ Phương trình IJ:
⇒ Phương trình IJ: 1( x - 2) – 3( y - 1) = 0 hay x - 3y + 1 = 0.
+ Gọi giao điểm của IJ và AH là M. Tọa độ điểm M là nghiệm hệ :
+ Lại có M là trung điểm AH ( vì MI // BH và I là trung điểm AB)
⇒ Tọa độ điểm H: ⇒ x + 2y = 0
Câu 4: Toạ độ hình chiếu của M(- 2; 1) trên đường thẳng ∆: 2x - y + 4 = 0 là:
A. ( ; - ) B. ( ; ) C. ( - ; ) D. (1; 0)
Lời giải:
Đáp án: C
+ Đường thẳng ∆ có 1 VTPT n→( 2; -1)
Gọi H( t; 2t + 4) là hình chiếu của M trên đường thẳng ∆ thì MH→( t + 2; 2t + 3)
⇒ Hai vecto MH→ và n→( 2; -1) cùng phương nên:
⇔ - t - 2 = 4t + 6 ⇔ t = -
⇒ Tọa độ điểm H( - ; )
Câu 5: Cho đường thẳng ∆: và điểm M(2; -3). Tọa độ hình chiếu vuông góc của M trên đường thẳng ∆ là:
A. (4; -2) B. (-0,8; -4,4) C. (-2,2; 4) D. (7; -4,4)
Lời giải:
Đáp án: B
Gọi H là hình chiếu của M trên ∆.
Ta có: H thuộc ∆ nên H( -3 + t ; -2t) ⇒ MH→( t - 5 ; 3 - 2t)
Đường thẳng có vectơ chỉ phương là u→( 1; -2) .
Do H là hình chiếu vuông góc của M trên ∆ nên hai đường thẳng MH và ∆ vuông góc với nhau
⇒ MH→ . u→ = 0 ⇔ 1(t - 5) – 2( 3 - 2t) = 0
⇔ t - 5 - 6 + 4t = 0 ⇔ 5t = 11 ⇔ t = 2,2
⇒ H (- 0,8; - 4,4)
Câu 6: Tìm hình chiếu của A( 1; 2) lên đường thẳng d: x - 3y + 6 = 0
A. H( 1; 2) B. H( ; ) C. H( ; ) D. H( ; )
Lời giải:
Đáp án: B
+ Lấy điểm H(3t - 6; t) thuộc d.
Ta có AH→( 3t - 7; t - 2)
Vectơ pháp tuyến của d là u→( 1; -3)
+Do H là hình chiếu của A trên d nên hai vecto AH→ và u→ cùng phương :
⇔ ⇔ - 3( 3t - 7) = 1(t - 2)
⇔ - 9t + 21 = t - 2 ⇔ t =
+ Với t = ta có H( ; )
Câu 7: Cho đường thẳng ∆: . Hoành độ hình chiếu của M(1; 2) trên ∆ gần nhất với số nào sau đây ?
A. -0,56 B. 0,32 C. 1,3 D. 0,85
Lời giải:
Đáp án: D
Gọi H là hình chiếu của M trên ∆.
Ta có: H ∈ ∆ nên H( 2 - 3t; 1 + 2t) và MH→( 1 - 3t; 2t - 1 )
Đường thẳng ∆có vectơ chỉ phương là u→(3; - 2) .
Hai vecto MH→ và u→ vuông góc với nhau nên : MH→ . u→ = 0
⇔ 3( 1 - 3t) – 2( 2t - 1) = 0 ⇔ 3 - 9t - 4t + 2 = 0
⇔ t = 5/13
⇒ Hoành độ của điểm H là 2 - 3t = 11/13
Câu 8: Cho tam giác ABC có AB = 4; BC = 4√2 và góc B = 450.Gọi H là hình chiếu của A lên BC. Tìm mệnh đề đúng?
A. H nằm trong đoạn BC thỏa mãn: BH = 3HC
B. AH = 2
C. BH = 2.
D. H là tâm đường tròn ngoại tiếp tam giác ABC
Lời giải:
Đáp án: D
+ Áp dụng định lí cosin vào tam giác ABC ta có:
AC2 = AB2 + BC2 – 2.AC.BC.CosB
= 42 + (4√2)2 - 2.4.4√2.cos450 = 16
⇒ AC = 4 nên AB = AC = 4 và AB2 + AC2 = BC2
⇒ Tam giác ABC vuông cân tại A.
+ AH là đường cao nên đồng thời là đường trung tuyến
⇒ H là trung điểm của BC: AH = BH = CH = BC/2 = 2√2
⇒ H là tâm đường tròn ngoại tiếp tam giác ABC.
Bài 1. Cho điểm A(–3; –3) và đường thẳng (d): 2x + y + 4 = 0. Tìm hình chiếu của A lên đường thẳng d.
Hướng dẫn giải:
Gọi H là hình chiếu của A lên đường thẳng (d) .
+ Lập phương trình đường thẳng AH:
AH đi qua điểm A(–3; –3) và nhận VTCP (2; 1) nên có VTPT là (1; –2).
⇒Phương trình AH: (x + 3) – 2(y + 3) = 0 hay x – 2y – 3 = 0
+ Hai đường thẳng AH và d cắt nhau tại H nên tọa độ điểm H là nghiệm hệ phương trình:
Vậy tọa độ hình chiếu của A lên d là H(–1; –2).
Bài 2. Cho tam giác ABC có A(–7; 10). Gọi I(–4; 2) là trung điểm của AB và J(–2; 1) là trung điểm của AC. Gọi hình chiếu của điểm A lên BC là H. Viết phương trình đường thẳng AH?.
Hướng dẫn giải:
+ Do I và J lần lượt là trung điểm của AB và AC nên IJ là đường trung bình của tam giác ABC ⇒ IJ // BC ( 1) .
+ Do H là hình chiếu của A lên BC
⇒ AH vuông góc BC (2).
Từ(1) và ( 2) suy ra: AH vuông góc IJ
+ Lập phương trình AH:
AH đi qua điểm A(–7; 10) và nhận VTPT .
⇒ ( AH): –6(x + 7) – (y – 10) = 0 hay –6x – y – 32 = 0.
Bài 3. Tìm toạ độ hình chiếu của M(–2; –10) trên đường thẳng ∆: x + 9y + 7 = 0.
Hướng dẫn giải:
+ Đường thẳng ∆ có VTPT là (7; 9)
Gọi H(–9t –7; t) là hình chiếu của M trên đường thẳng ∆ thì
Suy ra và (7; 9) cùng phương nên:
Do đó .
Bài 4. Cho đường thẳng ∆: và điểm M(6; 5) . Tìm tọa độ hình chiếu vuông góc của M trên đường thẳng ∆.
Hướng dẫn giải:
Gọi H là hình chiếu của M trên ∆.
Ta có: H ∈ ∆ ⇒ H(–6 + t; 10 – 10t), .
Đường thẳng có vectơ chỉ phương là .
Do H là hình chiếu vuông góc của M trên ∆ nên hai đường thẳng MH và ∆ vuông góc với nhau
= 0 hay (–12 + t) – 10(5 – 10t) = 0
Suy ra
Do đó .
Bài 5. Tìm hình chiếu của A( 3;–4) lên đường thẳng d: .
Hướng dẫn giải:
Gọi H là hình chiếu của M trên ∆.
Ta có: H ∈ ∆ nên H(–3 + 6t; 7 – 9t), .
Đường thẳng có vectơ chỉ phương là .
Do H là hình chiếu vuông góc của M trên ∆ nên hai đường thẳng AH và ∆ vuông góc với nhau
Suy ra = 0 nên 6(–6 + 6t) – 9(11 – 9t) = 0 hay
Do đó .
Bài 6. Cho điểm A(–1; 7) và đường thẳng (d): 6x + 3y – 3 = 0. Tìm hình chiếu của A lên đường thẳng d.
Bài 7. Cho tam giác ABC có A(–7; –3). Gọi I(5; –4) là trung điểm của AB và J(–5; –9) là trung điểm của AC. Gọi hình chiếu của điểm A lên BC là H. Viết phương trình đường thẳng AH.
Bài 8. Tìm toạ độ hình chiếu của M(10; 4) trên đường thẳng ∆: x + 4y = 0..
Bài 9. Cho đường thẳng ∆: và điểm M(–3; 5). Tìm tọa độ hình chiếu vuông góc của M trên đường thẳng ∆.
Bài 10. Tìm hình chiếu của A(6; 3) lên đường thẳng d:
Xem thêm các dạng bài tập Toán 10 có đáp án hay khác:
- Xác định vị trí tương đối giữa 2 đường thẳng
- Tìm điểm đối xứng của 1 điểm qua đường thẳng
- Viết phương trình đường thẳng thỏa mãn điều kiện cho trước
- Tìm điểm thuộc đường thẳng thỏa mãn điều kiện cho trước
- Viết phương trình đường thẳng d’ đối xứng với đường thẳng d qua 1 điểm
- Các bài toán cực trị liên quan đến đường thẳng
- Tính khoảng cách từ một điểm đến một đường thẳng
Lời giải bài tập lớp 10 sách mới:
- Giải bài tập Lớp 10 Kết nối tri thức
- Giải bài tập Lớp 10 Chân trời sáng tạo
- Giải bài tập Lớp 10 Cánh diều
- Giải Tiếng Anh 10 Global Success
- Giải Tiếng Anh 10 Friends Global
- Giải sgk Tiếng Anh 10 iLearn Smart World
- Giải sgk Tiếng Anh 10 Explore New Worlds
- Lớp 10 - Kết nối tri thức
- Soạn văn 10 (hay nhất) - KNTT
- Soạn văn 10 (ngắn nhất) - KNTT
- Soạn văn 10 (siêu ngắn) - KNTT
- Giải sgk Toán 10 - KNTT
- Giải sgk Vật lí 10 - KNTT
- Giải sgk Hóa học 10 - KNTT
- Giải sgk Sinh học 10 - KNTT
- Giải sgk Địa lí 10 - KNTT
- Giải sgk Lịch sử 10 - KNTT
- Giải sgk Kinh tế và Pháp luật 10 - KNTT
- Giải sgk Tin học 10 - KNTT
- Giải sgk Công nghệ 10 - KNTT
- Giải sgk Hoạt động trải nghiệm 10 - KNTT
- Giải sgk Giáo dục quốc phòng 10 - KNTT
- Lớp 10 - Chân trời sáng tạo
- Soạn văn 10 (hay nhất) - CTST
- Soạn văn 10 (ngắn nhất) - CTST
- Soạn văn 10 (siêu ngắn) - CTST
- Giải Toán 10 - CTST
- Giải sgk Vật lí 10 - CTST
- Giải sgk Hóa học 10 - CTST
- Giải sgk Sinh học 10 - CTST
- Giải sgk Địa lí 10 - CTST
- Giải sgk Lịch sử 10 - CTST
- Giải sgk Kinh tế và Pháp luật 10 - CTST
- Giải sgk Hoạt động trải nghiệm 10 - CTST
- Lớp 10 - Cánh diều
- Soạn văn 10 (hay nhất) - Cánh diều
- Soạn văn 10 (ngắn nhất) - Cánh diều
- Soạn văn 10 (siêu ngắn) - Cánh diều
- Giải sgk Toán 10 - Cánh diều
- Giải sgk Vật lí 10 - Cánh diều
- Giải sgk Hóa học 10 - Cánh diều
- Giải sgk Sinh học 10 - Cánh diều
- Giải sgk Địa lí 10 - Cánh diều
- Giải sgk Lịch sử 10 - Cánh diều
- Giải sgk Kinh tế và Pháp luật 10 - Cánh diều
- Giải sgk Tin học 10 - Cánh diều
- Giải sgk Công nghệ 10 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 10 - Cánh diều
- Giải sgk Giáo dục quốc phòng 10 - Cánh diều