Phương trình quy về phương trình bậc hai (Lý thuyết Toán lớp 10) | Kết nối tri thức

Với tóm tắt lý thuyết Toán 10 Bài 18: Phương trình quy về phương trình bậc hai sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh lớp 10 nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán 10.

Lý thuyết Phương trình quy về phương trình bậc hai

1. Phương trình dạng ax2+bx+c=dx2+ex+f

Để giải phương trình ax2+bx+c=dx2+ex+f ta thực hiện như sau:

- Bình phương hai vế và giải phương trình nhận được;

- Thử lại các giá trị tìm được ở trên có thỏa mãn phương trình đã cho hay không và kết luận nghiệm.

Ví dụ: Giải phương trình x27x=x28x+3

Hướng dẫn giải

Bình phương hai vế của phương trình x27x=x28x+3 , ta được:

x2 – 7x = –x2 – 8x + 3

⇒ 2x2 + x – 3 = 0.

Giải phương trình 2x2 + x – 3 = 0 ta được x1 = 1 và x2 = 32 .

Thay lần lượt x1 = 1 và x2 = 32 vào ta thấy chỉ có giá trị x2 = 32 thỏa mãn.

Vậy phương trình có nghiệm là x = 32.

2. Phương trình dạng ax2+bx+c=dx+e .

Để giải phương trình ax2+bx+c=dx+e , ta thực hiện như sau:

- Bình phương hai vế và giải phương trình nhận được;

- Thử lại các giá trị tìm được ở trên có thỏa mãn phương trình đã cho hay không và kết luận nghiệm.

Ví dụ: Giải phương trình 4x2+x1=x+1

Bình phương hai vế của phương trình , ta được:

4x2 + x – 1 = (–x + 1)2

⇒ 4x2 + x – 1 = x2 – 2x + 1

⇒ 3x2 + 3x – 2 = 0.

Giải phương trình 3x2 + 3x – 2 = 0 ta được x1=3+336x2=3336

Thay lần lượt x1=3+336x2=3336 vào 4x2+x1=x+1 ta thấy cả hai giá trị x1=3+336x2=3336 đều thỏa mãn.

Vậy phương trình có hai nghiệm là x1=3+336x2=3336

Bài tập Phương trình quy về phương trình bậc hai

Bài 1: Giải các phương trình sau :

a) x2+x+2=x2x+1

b) x22x=3x2x+1

Hướng dẫn giải

a) Bình phương hai vế của phương trình x2+x+2=x2x+1 , ta được:

x2 + x + 2 = x2 – x + 1

⇒ 2x = – 1

⇒ x = 12

Thay x = 12 vào phương trình x2+x+2=x2x+1 ta thấy thỏa mãn.

Vậy phương trình x2+x+2=x2x+1 có nghiệm là x = 12 .

b) Bình phương hai vế của phương trình x22x=3x2x+1 , ta được:

x2 – 2x = –3x2 – x + 1

⇒ 4x2 – x – 1 = 0

Phương trình 4x2 – x – 1 = 0 có hai nghiệm phân biệt là

x1=1+178x2=1178 .

Thay lần lượt x1=1+178x2=1178vào phương trình x22x=3x2x+1 ta thấy chỉ có x2=1178 thỏa mãn.

Vậy phương trình x22x=3x2x+1 có nghiệm là x=1178

Bài 2: Giải các phương trình sau:

a) 4x2+3x+1=2x+1

b) .x2+2x+33x=x+5

Hướng dẫn giải

a) Bình phương hai vế của phương trình 4x2+3x+1=2x+1 , ta được:

4x2 + 3x + 1 = 4x2 – 4x + 1

⇒ 7x = 0

⇒ x = 0

Thay x = 0 vào phương trình 4x2+3x+1=2x+1 ta thấy thỏa mãn.

Vậy phương trình 4x2+3x+1=2x+1 có nghiệm là x = 0.

b) Ta có x2+2x+33x=x+5x2+2x+33=5

Bình phương hai vế của phương trình x2+2x+33=5 , ta được:

– x2 + 2x + 33 = 25

⇒ – x2 + 2x + 8 = 0

Phương trình –x2 + 2x + 8 = 0 có hai nghiệm phân biệt x1 = –2 và x2 = 4.

Thay lần lượt x1 = –2 và x2 = 4 vào phương trình x2+2x+33=5ta thấy cả hai giá trị đều thỏa mãn.

Vậy phương trình x2+2x+33x=x+5 có hai nghiệm là x1 = –2 và x2 = 4.

Bài 3: Nhà của An, Minh, Quân và Long lần lượt nằm trên các vị trí A, B, C, D như hình vẽ sau. Biết nhà An cách nhà Minh 2 km, nhà Minh cách nhà Quân 1 km. Biết khoảng cách từ nhà Long đến nhà Quân bằng 23 khoảng cách từ nhà Long đến nhà An. Tính khoảng cách từ nhà Long đến nhà Minh.

Phương trình quy về phương trình bậc hai (Lý thuyết Toán lớp 10) | Kết nối tri thức

Hướng dẫn giải

Gọi khoảng cách từ nhà Long đến nhà Minh là x (km), tức là DB = x km.

Nhà An cách nhà Minh 2 km nên AB = 2 km.

Nhà Minh cách nhà Quân 1 km nên BC = 1 km.

- Áp dụng định lí Côsin cho tam giác DBC ta có :

DC2 = DB2 + BC2 – 2.DB.BC.cosDBC^ = x2 + 12 – 2.x.1.cos60° = x2 – x + 1

⇒ DC = x2x+1 .

Suy ra khoảng cách từ nhà Long đến nhà Quân là x2x+1 (km)

Ta có DBA^+DBC^=180o(hai góc kề bù)

Suy ra : DBA^=180oDBC^=180o60o=120o.

- Áp dụng định lí Côsin cho tam giác DBA ta có :

AD2 = DB2 + AB2 – 2.DB.AB.cosDBA^ = x2 + 22 – 2.x.2.cos120° = x2 + 2x + 4

⇒ AD = x2+2x+4.

Suy ra khoảng cách từ nhà Long đến nhà An là x2+2x+4 (km)

Do khoảng cách từ nhà Long đến nhà Quân bằng 23 khoảng cách từ nhà Long đến nhà An nên ta có phương trình: x2x+1 =23.x2+2x+4

Bình phương hai vế của phương trình x2x+1=23 .x2+2x+4 ta được:

x2 – x + 1 = 49(x2 + 2x + 4)

⇒ x2 – x + 1 = 49x2 + 89x + 169

59x2179x – 79 = 0.

Giải phương trình59 x2179 x – 79 = 0 ta được x1 ≈ 3,8 và x2 ≈ – 0,4.

Vì x là khoảng cách từ nhà Long đến nhà Minh nên x > 0, do đó x2 ≈ – 0,4 không thỏa mãn.

Thay x1 ≈ 3,8 vào phương trình x2x+1 = 23. x2+2x+4ta thấy giá trị x1 ≈ 3,8 thỏa mãn.

Do đó phương trình x2x+1 = 23.x2+2x+4 có nghiệm là x ≈ 3,8.

Vậy khoảng cách từ nhà Long đến nhà Minh khoảng 3,8 km.

Học tốt Phương trình quy về phương trình bậc hai

Các bài học để học tốt Phương trình quy về phương trình bậc hai Toán lớp 10 hay khác:

Xem thêm tóm tắt lý thuyết Toán lớp 10 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:


Giải bài tập lớp 10 Kết nối tri thức khác