Công thức xác định vị trí tương đối của hai đường thẳng lớp 8 (hay, chi tiết)
Bài viết Công thức xác định vị trí tương đối của hai đường thẳng trình bày đầy đủ công thức, ví dụ minh họa có lời giải chi tiết và các bài tập tự luyện giúp học sinh lớp 8 nắm vững kiến thức trọng tâm về Công thức xác định vị trí tương đối của hai đường thẳng từ đó học tốt môn Toán.
1. Công thức
a) Hai đường thẳng song song:
Hai đường thẳng phân biệt có hệ số góc bằng nhau thì song song với nhau và ngược lại, hai đường thẳng song song thì có hệ số góc bằng nhau.
Cho hai đường thẳng (d1): y = ax + b và (d2): y = cx + d.
Vì d1//d2 nên a = c; b≠ d.
Với a = c; b = d thì d1d2.
b) Hai đường thẳng cắt nhau:
Hai đường thẳng có hệ số góc khác nhau thì cắt nhau và ngược lại, hai đường thẳng cắt nhau thì có hệ số góc khác nhau.
Cho hai đường thẳng (d1): y = ax + b và (d2): y = cx + d, ta có:
d1 d2 nên a ≠ c.
2. Ví dụ minh họa
Ví dụ 1. Tìm các cặp đường thẳng cắt nhau trong các đường thẳng sau:
d1: y = x + 1;
d2: y = x + 4;
d3; y = −x + 1.
Hướng dẫn giải
Các cặp đường thẳng cắt nhau là:
d1 và d3 do 1 ≠ −1.
d2 và d3 do 1 ≠ −1.
Ví dụ 2. Cho d1: y = ax + 1; d2: y = 2x – 1; d3: y = −3x + 1.
a) Tìm a để d1//d2;
b) Tìm a để d1//d3.
Hướng dẫn giải
a) Để d1//d2 suy ra a = 2.
Khi đó d1: y = 2x + 1.
b) Để d1//d3 suy ra a = −3.
Khi đó d1: y = −3x + 1.
3. Bài tập tự luyện
Bài 1. Đường thẳng song song với đường thẳng y = 3x và cắt trục tung tại điểm có tung độ là 5 là
A. y = 3x + 5;
B. y = −3x – 5;
C. y = 5 – 3x;
D. y = −5 – 3x.
Bài 2.Cho hình thang cân có độ dài đường cao của nó bằng 10 cm và hai đường chéo vuông góc với nhau. Độ dài đường trung bình của hình thang cân là
A. 8 cm;
B. 15 cm;
C. 10 cm;
D. 12 cm.
Bài 3. Tìm ba cặp đường thẳng cắt nhau và các cặp đường thẳng song song với nhau trong các đường thẳng sau:
d1: y = 0,25x;
d2: y = −2x + 4;
d3:
Bài 2. Tìm n để các hàm số bậc nhất y = 2nx + 1 và y = 4x + 6 có đồ thị là những đường thẳng song song với nhau.
Bài 4. Cho đường thẳng d: y = 2x + 2204. Xác định hai hàm số biết đồ thị của chúng là hai đường thẳng song song với d.
Xem thêm các bài viết về công thức Toán hay, chi tiết khác:
- Đề thi lớp 1 (các môn học)
- Đề thi lớp 2 (các môn học)
- Đề thi lớp 3 (các môn học)
- Đề thi lớp 4 (các môn học)
- Đề thi lớp 5 (các môn học)
- Đề thi lớp 6 (các môn học)
- Đề thi lớp 7 (các môn học)
- Đề thi lớp 8 (các môn học)
- Đề thi lớp 9 (các môn học)
- Đề thi lớp 10 (các môn học)
- Đề thi lớp 11 (các môn học)
- Đề thi lớp 12 (các môn học)
- Giáo án lớp 1 (các môn học)
- Giáo án lớp 2 (các môn học)
- Giáo án lớp 3 (các môn học)
- Giáo án lớp 4 (các môn học)
- Giáo án lớp 5 (các môn học)
- Giáo án lớp 6 (các môn học)
- Giáo án lớp 7 (các môn học)
- Giáo án lớp 8 (các môn học)
- Giáo án lớp 9 (các môn học)
- Giáo án lớp 10 (các môn học)
- Giáo án lớp 11 (các môn học)
- Giáo án lớp 12 (các môn học)