Chứng minh đồ thị hàm số luôn đi qua một điểm cố định



Cách giải Chứng minh đồ thị hàm số luôn đi qua một điểm cố định lớp 9 với phương pháp giải chi tiết và bài tập đa dạng giúp học sinh ôn tập, biết cách làm bài tập Chứng minh đồ thị hàm số luôn đi qua một điểm cố định.

Chứng minh đồ thị hàm số luôn đi qua một điểm cố định

A. Phương pháp giải

Chuyên đề Toán lớp 9

B. Bài tập tự luận

Bài 1: Chứng minh các đường thẳng có phương trình sau luôn đi qua 1 điểm cố định.

a, y = 3(m + 1)x - 3m - 2

b, (m + 2)x + (m-3)y - m + 8 = 0

Hướng dẫn giải

a, y = 3(m + 1)x - 3m - 2

Giả sử đồ thị hàm số đi qua điểm M(xo;yo) với mọi m

Ta có: yo = 3(m+1)xo - 3m - 2

⇔ yo = 3xom + 3xo - 3m - 2

⇔ (3xo -3)m = yo - 3xo + 2

⇔ 3xo - 3 = 0 và yo - 3xo + 2 = 0

⇔ xo = 1; yo = 1

b, (m + 2)x + (m-3)y - m + 8 = 0

Giả sử đồ thị hàm số đi qua điểm M(xo; yo) với mọi m

Ta có: (m+2)xo + (m-3)yo - m + 8 = 0

⇔ mxo + 2xo + myo - m + 8 = 0

⇔ m(xo + yo -1) + 2xo - 3yo + 8 = 0

⇔ xo + yo - 1 = 0 và -2xo + 3yo - 8 = 0

⇔ xo = -1 và yo = 2

Bài 2: Cho đường thẳng (d) có dạng: y=(2a-1)x-3.

a, Viết phương trình đường thẳng (d) biết đường thẳng đi qua A(1;-1)

b, Viết phương trình đường thẳng (d’) vuông góc với đường thẳng (d) và cắt trục tung tại B có tung độ là 4/3 .

c, Vẽ (d) và (d’) trên cùng một mặt phẳng tọa độ. Tìm giao điểm C giữa (d) và (d’).

Hướng dẫn giải

Chuyên đề Toán lớp 9

a) A(1;-1) thuộc vào (d) nên: -1 = (2a-1).1 -3 ⇔ 2a = 3 ⇔ a = 3/2

Phương trình đường thẳng (d): y=(2. 3/2 - 1)x - 3 ⇔ y = 2x - 3.

b) Phương trình đường thẳng (d’) có dạng y = a’x+b’

(d’) vuông góc với (d) ⇔ a’.2 = -1 ⇔ a’ = -1/2

Vậy (d’): y= -1/2x + b

Tọa độ điểm B(0; 4/3) thuộc (d) ⇔ 4/3 = -1/2.0 + b ⇔ b = 4/3

Phương trình đường thẳng (d’): y= -1/2x + 4/3

c, Phương trình hoành độ giao điểm C giữa (d) và (d’):

2x-3 = -1/2x + 4/3

2x+ 1/2x= 4/3 + 3

5/2x = 13/3

x = 26/15

=> y = 2.26/15 - 3 = 7/15

Vậy C(26/15; 7/15)

C. Bài tập tự luyện

Bài 1. Cho đường thẳng d: y = mx + 1. Chứng minh d luôn đi qua một điểm cố định với mọi tham số m.

Bài 2. Chứng minh đường thẳng d: y = 2(m + 1)x – m -1 luôn đi qua một điểm cố định với mọi tham số m.

Bài 3. Hàm số y = (m – 2)x + m + 3 có đồ thị là đường thẳng d.

a) Chứng minh d luôn đi qua một điểm cố định với mọi giá trị của m;

b) Tìm m để d cắt Ox, Oy tạo thành tam giác có diện tích bằng 2.

Bài 4. Hãy chứng minh rằng khi m thay đổi thì các đường thẳng có phương trình là y = (m + 1)x – 3m + 4 luôn đi qua một điểm cố định.

Bài 5. Cho đường thẳng d: 2(m – 1)x + (m – 2)y = 2.

a) Chứng minh d luôn đi qua một điểm cố định với mọi m;

b) Tìm m để khoảng cách từ gốc tọa độ O đến d là lớn nhất.

Tham khảo thêm các Chuyên đề Toán lớp 9 khác:

Mục lục các Chuyên đề Toán lớp 9:




Giải bài tập lớp 9 sách mới các môn học