Tìm hoành độ giao điểm của đồ thị hàm số

+ Điểm M(x0; y0) thuộc đồ thị hàm số y = f(x) ⇔ y0 = f(x0).

+ Hoành độ giao điểm của đồ thị hàm số y = f(x) và y = g(x) là nghiệm của phương trình f(x) = g(x).

Ví dụ 1: Những điểm nào dưới đây thuộc đồ thị hàm số y = 2x2 + 3x + 1.

A(0; 3);    B(0; 1);    C(1; 0);    D (-1/2;0)    E(-1; 0).

Hướng dẫn giải:

Đặt f(x) = 2x2 + 3x + 1.

Ta có:

+ f(0) = 2.02 + 3.0 + 1 = 1 ⇒ A(0; 3) không thuộc đồ thị hàm số và B(0; 1) thuộc đồ thị hàm số.

+ f(1) = 2.12 + 3.1 + 1 = 6 ⇒ C(1; 0) không thuộc đồ thị hàm số.

+ f(-1/2) = 2.(-1/2)2 + 3(-1/2) + 1 = 0 ⇒ D(-1/2;0) thuộc đồ thị hàm số.

+ f(-1) = 2.(-1)2 + 3.(-1) + 1 = 0 ⇒ E(-1; 0) thuộc đồ thị hàm số.

Ví dụ 2: Tìm m để A(1; 2) thuộc các đồ thị hàm số dưới đây:

a) y = f(x) = x2 + 2x + m

Tìm hoành độ giao điểm của đồ thị hàm số (Chuyên đề Toán 9)

Hướng dẫn giải:

a) A(1; 2) thuộc đồ thị hàm số y = f(x) = x2 + 2x + m

⇔ 2 = 12 + 2.1 + m

⇔ m = -1.

Vậy m = -1.

b) A(1; 2) thuộc đồ thị hàm số Tìm hoành độ giao điểm của đồ thị hàm số (Chuyên đề Toán 9)

Tìm hoành độ giao điểm của đồ thị hàm số (Chuyên đề Toán 9)

⇔ m = 0.

Vậy m = 0.

c) A(1; 2) thuộc đồ thị hàm số Tìm hoành độ giao điểm của đồ thị hàm số (Chuyên đề Toán 9)

Tìm hoành độ giao điểm của đồ thị hàm số (Chuyên đề Toán 9)

⇔ m + 2 = 4

⇔ m = 2.

Vậy m = 2.

Ví dụ 3: Tìm giao điểm của hai đồ thị hàm số y = 2x2 + 3x + 1 và y = x + 1.

Hướng dẫn giải:

Hoành độ giao điểm của hai hàm số là nghiệm của phương trình:

2x2 + 3x + 1 = x + 1

⇔ 2x2 + 2x = 0

⇔ 2x(x + 1) = 0

Tìm hoành độ giao điểm của đồ thị hàm số (Chuyên đề Toán 9)

+ Với x = 0 thì y = x + 1 = 1.

+ Với x = -1 thì y = x + 1 = 0.

Vậy hai đồ thị hàm số trên có 2 giao điểm là A(0; 1) và B(-1; 0).

Bài 1: Điểm nào dưới đây thuộc đồ thị hàm số y = 2x2 + x.

A. (0; 0)    B. (0; 1).    C. (1; 0)    D. (2; 0).

Đáp án: A

Bài 2: Điểm A(1; 0) không thuộc đồ thị hàm số nào dưới đây?

Tìm hoành độ giao điểm của đồ thị hàm số (Chuyên đề Toán 9)⇔ m + 2 = 4

Đáp án: D

Bài 3: Với giá trị nào của a dưới đây thì đồ thị hàm số y = 3x2 + ax + 1 đi qua điểm M(-2; 0).

A. a = 13/2    B. a = 13.

C. a = -13    D. a = -13/2.

Đáp án: A

Bài 4: Hoành độ giao điểm của đồ thị hàm số y = x + 1 và y = 2x + 1 là:

A. x = 0    B. x = -1    C. x = -1/2    D. x = -2.

Đáp án: A

Bài 5: Số giao điểm của đồ thị hàm số y = √(x-1) và y = x – 1 là:

A. 0    B. 1    C. 2    D. Vô số.

Đáp án: C

Bài 6: Tìm một điểm bất kì thuộc đồ thị hàm số y = 2x2 + x + 3.

Hướng dẫn giải:

y = 2x2 + x + 3

Chọn x = 1 ⇒ y = 2.12 + 1 + 3 = 6.

Vậy chọn được điểm (1; 6) thuộc đồ thị hàm số.

Lưu ý: Các bạn có thể chọn được vô số điểm khác.

Bài 7: Tìm điểm thuộc đồ thị hàm số Tìm hoành độ giao điểm của đồ thị hàm số (Chuyên đề Toán 9) có tung độ bằng 2.

Hướng dẫn giải:

Xét Tìm hoành độ giao điểm của đồ thị hàm số (Chuyên đề Toán 9) ⇔ x + 3 = 2(x – 1) ⇔ x + 3 = 2x – 2 ⇔ x = 5.

Vậy điểm có tung độ bằng 2 thuộc đồ thị hàm số là (5; 2).

Bài 8: Tìm a để đồ thị hàm số y = 3x2 + 2ax + 1 đi qua điểm M(-2; 2).

Hướng dẫn giải:

Đồ thị hàm số y = 3x2 + 2ax + 1 đi qua điểm M(-2; 2)

⇔ 3.(-2)2 + 2.a.(-2) + 1 = 2

⇔ 13 – 4a = 2

⇔ 4a = 11

⇔ a = 11/4 .

Vậy a = 11/4 .

Bài 9: Tìm giao điểm của đồ thị hàm số y = 3x2 + x – 2 và y = 2x2 – x + 1.

Hướng dẫn giải:

Hoành độ giao điểm của hai đồ thị hàm số là nghiệm của phương trình:

3x2 + x – 2 = 2x2 – x + 1

⇔ x2 + 2x – 3 = 0

⇔ (x – 1)(x + 3) = 0

Tìm hoành độ giao điểm của đồ thị hàm số (Chuyên đề Toán 9)

+ Với x = 1 thì y = 3.12 + 1 – 2 = 2

+ Với x = -3 thì y = 3.(-3)2 + (-3) – 2 = 22

Vậy hai đồ thị hàm số trên có hai giao điểm là (1 ; 2) và (-3 ; 22).

Bài 10: Tìm a; b để đồ thị hàm số y = ax2 + x + b đi qua A(1; 2) và B(2; 0).

Hướng dẫn giải:

Đồ thị hàm số y = ax2 + x + b đi qua A(1; 2) và B(2; 0)

Tìm hoành độ giao điểm của đồ thị hàm số (Chuyên đề Toán 9)

Vậy a = -1; b = 2.

Xem thêm các dạng bài tập Toán lớp 9 có đáp án và lời giải chi tiết khác:

Mục lục các Chuyên đề Toán lớp 9:


Giải bài tập lớp 9 sách mới các môn học