10 Bài tập Định lí Viète (có đáp án) - Chân trời sáng tạo Trắc nghiệm Toán 9

Với 10 bài tập trắc nghiệm Định lí Viète Toán lớp 9 có đáp án và lời giải chi tiết đầy đủ các mức độ sách Chân trời sáng tạo sẽ giúp học sinh ôn luyện trắc nghiệm để biết cách làm các dạng bài tập Toán 9.

I. Nhận biết

Câu 1. Nếu phương trình ax2 + bx + c = 0 (a ≠ 0) có hai nghiệm x1; x2 thì

A. x1+x2=bax1x2=ca

B. x1+x2=-bax1x2=ca

C. x1+x2=bax1x2=ac

D. x1+x2=bax1x2=-ca

Câu 2. Cho phương trình ax2 + bx + c = 0 (a ≠ 0). Nếu a + b + c = 0 thì nghiệm của phương trình là

A. x1 = 1; x2 = -ca.

B. x1 = 1; x2 = ca.

C. x1 = –1; x2 = ca.

D. x1 = –1; x2 = -ca.

Câu 3. Cho phương trình ax2 + bx + c = 0 (a ≠ 0). Nếu a – b + c = 0 thì nghiệm của phương trình là

A. x1 = 1; x2 = -ca.

B. x1 = –1; x2 = ca.

C. x1 = –1; x2 = -ca.

D. x1 = 1; x2 = ca.

Câu 4. Hai số x1; x2 có tổng là S và tích là P (điều kiện S2 – 4P ≥ 0). Khi đó x1; x2 là nghiệm của phương trình nào sau đây?

A. x2 + Sx + P = 0.

B. x2 – Sx + P = 0.

C. x2 + Sx – P = 0.

D. x2 – Sx – P = 0.

Câu 5. Gọi là hai nghiệm của phương trình x2 – 3x + 2 = 0 khi đó ta có

A. x1 + x2 = 3; x1x2 = 2.

B. x1 + x2 = –3; x1x2 = 2.

C. x1 + x2 = 3; x1x2 = –2.

D. x1 + x2 = –3; x1x2 = –2.

II. Thông hiểu

Câu 6.Nghiệm của phương trình x2 – 3x + 2 = 0 là

A. x1 = 1; x2 = 2.

B. x1 = 1; x2 = 2.

C. x1 = 1; x2 = 2.

D. x1 = 1; x2 = 2.

Câu 7. Phương trình √2x2 + x – √2 + 1 = 0 có nghiệm là bao nhiêu?

A. x1 = –1; x2 = 2-12.

B. x1 = 1; x2 = -2-12.

C. x1 = –1; x2 = -2+12.

D. x1 = 1; x2 = 2+12.

Câu 8. Hai số có S = x1 + x2 = –6; P = x1x2 = –8 là nghiệm của phương trình nào?

A. x2 + 6x – 8 = 0.

B. x2 – 6x – 8 = 0.

C. x2 + 6x + 8 = 0.

D. –x2 + 6x – 8 = 0.

Câu 9. Phương trình nào đưới đây có hai nghiệm 3 + √2 và 3 – √2?

A. x2 + 6x + 7 = 0.

B. x2 – 6x + 7 = 0.

C. x2 – 7x + 6 = 0.

D. x2 + 7x + 6 = 0.

III. Vận dụng

Câu 10. Để phương trình x2 + 2x + m = 0 có hai nghiệm x1, x2 thỏa mãn 3x1 + 2x2 = 1 thì giá trị m là bao nhiêu?

A. m = –35.

B. m = 35.

C. m=35.

D. m=-35.

Xem thêm bài tập trắc nghiệm Toán lớp 9 Chân trời sáng tạo có đáp án hay khác:

Xem thêm các tài liệu học tốt lớp 9 hay khác:


Giải bài tập lớp 9 Chân trời sáng tạo khác