Cho tam giác ABC có c = 5, a = 8

Bài 3.44 trang 44 sách bài tập Toán lớp 10 Tập 1: Cho tam giác ABC có c = 5, a = 8 và B^=60°.

a) Tính b và số đo các góc A, C (số đo các góc làm tròn đến hàng đơn vị, theo đơn vị độ).

b) Tính độ dài đường cao kẻ từ B.

c) Tính độ dài trung tuyến kẻ từ A.

Lời giải:

a) Áp dụng định lí côsin cho tam giác ABC ta có:

• b2 = a2 + c2 – 2.a.c.cosB

b2 = 82 + 52 – 2.8.5.cos60°

b2 = 49

b = 7.

• a2 = b2 + c2 – 2.b.c.cosA

cosA = b2+c2a22bc=72+52822.7.5=17

A^82°.

• c2 = a2 + b2 – 2.a.b.cosC

cosC = a2+b2c22ab=82+72522.8.7=1114.

C^=38°.

Vậy b = 7, A^82°C^=38°.

b) Áp dụng công thức tính diện tích tam giác ABC ta có:

S=12acsinB=12.8.5.sin60°=103.

S=12hb.bhb=2Sb=2.1037=2037.

Vậy độ dài đường cao kẻ từ B của tam giác ABC bằng 2037.

c) Áp dụng công thức tính độ dài đường trung tuyến của tam giác ta có:

ma2=b2+c22a24=72+522824=21

ma=21.

Vậy độ dài đường trung tuyến kẻ từ A của tam giác ABC là ma=21.

Xem thêm các bài giải sách bài tập Toán lớp 10 sách Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:


Giải bài tập lớp 10 Kết nối tri thức khác