Cho tam giác ABC có c = 1, a = 2

Bài 3.41 trang 44 sách bài tập Toán lớp 10 Tập 1: Cho tam giác ABC có c = 1, a = 2 và B^=120°.

a) Tính b, A^,C^.

b) Tính diện tích của tam giác.

c) Tính độ dài đường cao kẻ từ B của tam giác.

Lời giải:

Áp dụng định lí côsin cho tam giác ABC ta có:

• b2 = a2 + c2 – 2.a.c.cosB

b2 = 22 + 12 – 2.2.1.cos120°

b2 = 7

b = 7.

• a2 = b2 + c2 – 2.b.c.cosA

cosA = b2+c2a22bc=7+142.7.1=27

A^41°.

• cosC = a2+b2c22ab=4+712.2.7=527

C^19°.

Vậy b = 7,A^41°C^19°.

b) Áp dụng công thức tính diện tích tam giác ta có:

S=12ac.sinB=12.2.1.sin120°=32.

Vậy diện tích của tam giác ABC bằng 32.

c) Áp dụng công thức tính diện tích tam giác ta có:

S=12.hb.bhb=2Sb=2.327=217.

Vậy độ dài đường cao kẻ từ B của tam giác bằng 217.

Xem thêm các bài giải sách bài tập Toán lớp 10 sách Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:


Giải bài tập lớp 10 Kết nối tri thức khác