Công thức tính xác suất của biến cố ngẫu nhiên trong một số trò chơi đơn giản lớp 7 (hay, chi tiết)

Bài viết Công thức tính xác suất của biến cố ngẫu nhiên trong một số trò chơi đơn giản lớp 7 trình bày đầy đủ công thức, ví dụ minh họa có lời giải chi tiết và các bài tập tự luyện giúp học sinh nắm vững kiến thức trọng tâm về Công thức tính xác suất của biến cố ngẫu nhiên trong một số trò chơi đơn giản từ đó học tốt môn Toán.

1. Công thức

a) Xác suất của biến cố trong trò chơi gieo xúc xắc

Trong trò chơi gieo ngẫu nhiên xúc xắc một lần:

Tập hợp Ω gồm các kết quả có thể xảy ra đối với mặt xuất hiện của đồng xu sau một lần tung.

Ω = {1; 2; 3; 4; 5; 6}.

Do đó n(Ω) = 6.

Xác suất của một biến cố A trong trò chơi gieo xúc xắc kí hiệu P(A) bằng tỉ số của số các kết quả thuận lợi cho biến cố và số các kết quả có thể xảy ra đối với mặt xuất hiện của xúc xắc.

Công thức: P(A)=n(A)n(Ω)=n(A)6.

b) Xác suất của biến cố trong trò chơi rút thẻ từ trong hộp

Trong trò chơi rút thẻ từ trong hộp:

Tập hợp Ω gồm các kết quả có thể xảy ra đối với số xuất hiện trên thẻ được rút ra.

Xác suất của một biến cố B trong trò chơi rút thẻ từ trong hộp, kí hiệu là P(B) bằng tỉ số của số các kết quả thuận lợi cho biến cố và số các kết quả có thể xảy ra đối với số xuất hiện trên thẻ được rút ra.

Công thức: P(B)=n(B)n(Ω).

2. Ví dụ minh hoạ

Ví dụ 1. Gieo ngẫu nhiên xúc xắc một lần.

a) Tìm số phần tử của tập hợp E gồm các kết quả có thể xảy ra đối với mặt xuất hiện của xúc xắc.

b) Xét biến cố “Mặt xuất hiện của xúc xắc có số chấm là số không chia hết cho 3”. Tính xác suất của biến cố đó.

Hướng dẫn giải

a) Tập hợp gồm các kết quả có thể xảy ra đối với mặt xuất hiện của xúc xắc là:

E = {mặt 1 chấm; mặt 2 chấm; mặt 3 chấm; mặt 4 chấm; mặt 5 chấm; mặt 6 chấm}.

Vậy số phần tử của tập hợp E là 6.

b) Trong các số 1; 2; 3; 4; 5; 6, các số không chia hết cho 3 là: 1; 2; 4; 5.

Do đó có bốn kết quả thuận lợi cho biến cố “Mặt xuất hiện của xúc xắc có số chấm là số không chia hết cho 3” là mặt 1 chấm; mặt 2 chấm; mặt 4 chấm; mặt 5 chấm.

Xác suất của biến cố đó là 46=23.

Vậy xác suất của biến cố “Mặt xuất hiện của xúc xắc có số chấm là số không chia hết cho 3” là 23.

Ví dụ 2. Một hộp gồm 15 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1; 2; 3; 4; ...; 14; 15. Hai thẻ khác nhau thì ghi hai số khác nhau. Rút ngẫu nhiên một thẻ trong hộp.

a) Tìm số phần tử của tập hợp F gồm các kết quả có thể xảy ra đối với số xuất hiện trên thẻ được rút ra.

b) Xét biến cố “Số xuất hiện trên thẻ được rút ra là số chia 5 dư 1”. Tính xác suất của biến cố đó.

Hướng dẫn giải

a) Tập hợp gồm các kết quả có thể xảy ra đối với số xuất hiện trên thẻ được rút ra là: F = {1; 2; 3; 4; ...; 14; 15}.

Vậy số phần tử của tập hợp F là 15.

b) Trong các số 1; 2; 3; 4; ...; 14; 15, các số chia 5 dư 1 là 1; 6; 11. Do đó có ba kết quả thuận lợi cho biến cố “Số xuất hiện trên thẻ được rút ra là số chia 5 dư 1” là 1; 6; 11.

Xác suất của biến cố đó là 315=15.

Vậy xác suất của biến cố “Số xuất hiện trên thẻ được rút ra là số chia 5 dư 1” là 15.

3. Bài tập tự luyện

Bài 1. Gieo ngẫu nhiên xúc xắc một lần. Tính xác suất của biến cố “Mặt xuất hiện của xúc xắc có số chấm là hợp số”.

Bài 2. Gieo ngẫu nhiên xúc xắc một lần. Xét biến cố “Mặt xuất hiện của xúc xắc có số chấm là ước của 2”.

a) Tìm k (số các kết quả thuận lợi cho biến cố trên).

b) Tính xác suất của biến cố đó.

Bài 3. Để chuẩn bị cho buổi thi đua văn nghệ nhân ngày Nhà giáo Việt Nam 20/11, bạn lớp trưởng đã chọn ra 10 bạn tập múa gồm các bạn: Hoa, Thảo, Mai, Dũng, Cường, Bình, Châu, Minh, My, Phúc. Chọn ngẫu nhiên một bạn trong nhóm 10 bạn tập múa trên.

a) Tìm số phần tử của tập hợp P gồm các kết quả xảy ra đối với tên học sinh được chọn ra.

b) Tính xác suất của biến cố “Học sinh được chọn ra có tên bắt đầu bằng chữ M”.

Bài 4. Bạn Cường vào cửa hàng Loteria và dự định chọn một suất gà rán. Khi đọc menu, bạn Cường thấy cửa hàng đang có các món như sau: combo gà rán (ưu đãi) có giá 97 000 đồng, combo gà viên (ưu đãi) có giá 84 000 đồng, gà rán – 1 miếng có giá 35 000 đồng, gà rán – 2 miếng có giá 68 000 đồng, gà rán – 3 miếng có giá 101 000 đồng, cánh gà rán hot wings – 3 miếng có giá 48 000 đồng. Bạn Cường cảm thấy món nào cũng ngon hết nên dự định nhắm mắt chỉ tay ngẫu nhiên vào một món.

a) Tìm số phần tử của tập hợp G gồm các kết quả có thể xảy ra đối với món gà được bạn Cường chọn.

b) Tính xác suất của biến cố “Món gà được bạn Cường chọn có giá dưới 70 000 đồng”.

c) Tính xác suất của biến cố “Món gà được bạn Cường chọn có giá trên 90 000 đồng”.

Bài 5. Gieo ngẫu nhiên xúc xắc một lần. Tính xác suất của mỗi biến cố sau:

a) “Mặt xuất hiện của xúc xắc có số chấm là số nguyên tố”;

b) “Mặt xuất hiện của xúc xắc có số chấm là số chia 4 dư 1”.

Xem thêm các bài viết về công thức Toán hay, chi tiết khác:


Đề thi, giáo án các lớp các môn học