Công thức tính số tổ hợp lớp 10 (hay, chi tiết)
Bài viết Công thức tính số tổ hợp lớp 10 trình bày đầy đủ công thức, ví dụ minh họa có lời giải chi tiết và các bài tập tự luyện giúp học sinh nắm vững kiến thức trọng tâm về Công thức tính số tổ hợp từ đó học tốt môn Toán.
1. Công thức
Cho tập hợp A gồm n phần tử và một số nguyên k với 1 k n.
Mỗi tập con gồm k phần tử được lấy ra từ n phần tử của A được gọi là một tổ hợp chập k của n phần tử đó.
Kí hiệu là số tổ hợp chập k của n phần tử với 1 k n. Ta có: .
với 1 k n.
Chú ý:
⦁ (0 k n);
⦁ (1 k n).
2. Ví dụ minh họa
Ví dụ 1. Chứng minh rằng:
Hướng dẫn giải:
Ví dụ 2. Rút gọn: .
Hướng dẫn giải:
Ví dụ 3. Một bó hoa có 9 bông hoa màu hồng và 5 bông hoa màu đỏ. Hỏi có bao nhiêu cách lấy ra 3 bông hoa thỏa mãn:
a) Có 2 bông màu hồng?
b) Có ít nhất 1 bông màu hồng?
c) Có đủ cả 2 màu?
Hướng dẫn giải:
a) Số cách chọn 2 bông hoa màu hồng trong 9 bông hồng:
Số cách chọn 1 bông hoa màu đỏ trong 5 bông màu đỏ: 5.
Cách lấy ra 3 bông hoa thỏa mãn có 2 bông màu hồng là: cách.
b) Số cách chọn không có bông màu hồng (cả 3 bông đều màu đỏ) là:
Số cách chọn có ít nhất 1 bông màu hồng là: cách.
c) Có hai trường hợp: 2 bông hồng, 1 bông đỏ hoặc 2 bông đỏ, 1 bông hồng.
Tương tự câu a), ta có số cách chọn 2 đỏ 1 hồng là:
Số cách chọn đủ cả hai màu là: cách.
Ví dụ 4. Một lớp 50 học sinh, có 30 nữ. Cô giáo muốn lấy ra 5 học sinh để lập thành một đội văn nghệ. Hỏi cô có bao nhiêu cách chọn nếu:
a) Chọn bất kỳ?
b) Có hai học sinh nam?
c) Có ít nhất 1 bạn nam?
Hướng dẫn giải:
a) Chọn bất kì 5 học sinh trong 50 học sinh có cách chọn.
b) Chọn 2 học sinh nam có cách chọn.
Chọn 3 học sinh nữ còn lại có cách chọn.
Chọn 5 học sinh trong đó có 2 học sinh nam có cách chọn.
c) Chọn không có bạn nam nào (tất cả 5 học sinh đều là nữ): cách chọn.
Chọn 5 học sinh trong đó có ít nhất 1 học sinh nam là: cách chọn.
Ví dụ 5. Một hình đa giác đều gồm 20 cạnh. Hỏi có thể lập được:
a) Bao nhiêu hình chữ nhật từ các đỉnh của đa giác trên?
b) Bao nhiêu hình tam giác từ các đỉnh của tam giác trên?
c) Bao nhiêu đường chéo?
Hướng dẫn giải:
a) Nhận thấy các hình chữ nhật được tạo thành có 2 đường chéo đi qua tâm O của đa giác. Ta có số đường chéo của đa giác đi qua tâm O là 10. Chọn 2 trong 10 đường chéo thì lập được một hình chữ nhật.
Vậy hình chữ nhật.
b) Một tam giác có 3 đỉnh không sắp thứ tự nên số tam giác:.
c) Một đường chéo được tạo thành từ hai điểm và trừ các cạnh của đa giác đó nên số đường chéo: .
Ví dụ 6. Một tổ có 15 học sinh, thầy giáo có 3 đề kiểm tra khác nhau. Cần chọn 5 học sinh cho mỗi đề kiểm tra. Hỏi thầy giáo có bao nhiêu cách?
Hướng dẫn giải:
+ Chọn ra 5 học sinh trong 1 tổ cho đề kiểm tra số 1 có cách chọn.
+ Khi đó số học sinh còn lại chưa được phát đề kiểm tra là 10 học sinh.
Chọn ra 5 học sinh trong 10 học sinh còn lại cho đề kiểm tra số 2 có cách chọn.
+ Có 1 cách chọn cho 5 học sinh còn lại cho đề kiểm tra số 3.
Như vậy thầy giáo có: 3 003 . 252 . 1 = 750 750 cách.
3. Bài tập tự luyện
Bài 1. Cho tập hợp M = {0; 1; 2; 3; 4; 5; 6; 7; 8; 9}. Tính số tập con gồm 3 phần tử của M không có số 0?
Bài 2. Có bao nhiêu số tự nhiên có ba chữ số dạng với a, b, c {0; 1; 2; 3; 4; 5; 6} sao cho a < b < c?
Bài 3. Một lớp học có 40 học sinh gồm 25 nam và 15 nữ. Chọn 3 học sinh để tham gia vệ sinh công cộng toàn trường, hỏi có bao nhiêu cách chọn như trên?
Bài 4. Một hộp đựng 50 viên bi gồm 10 viên bi màu trắng, 25 viên bi màu đỏ và 15 viên bi màu xanh. Có bao nhiêu cách chọn 8 viên bi trong hộp đó mà không có viên bi nào màu xanh?
Bài 5. Cho một đa giác đều có 10 cạnh. Có bao nhiêu tam giác có 3 đỉnh thuộc các đỉnh của đa giác đã cho?
Bài 6. Tính số đường chéo của đa giác đều có 20 cạnh.
Bài 7. Từ một nhóm có 10 học sinh nam và 8 học sinh nữ, có bao nhiêu cách chọn ra 5 học sinh trong đó có 3 học sinh nam và 2 học sinh nữ?
Bài 8. Tại một buổi lễ có 13 cặp vợ chồng tham dự, mỗi ông bắt tay với một người trừ vợ mình, các bà không ai bắt tay nhau. Hỏi có bao nhiêu cái bắt tay?
Bài 9. Có 10 quyển sách toán giống nhau, 11 quyển sách lý giống nhau và 9 quyển sách hóa giống nhau. Có bao nhiêu cách trao giải thưởng cho 15 học sinh có kết quả thi cao nhất của khối A trong kì thi thử lần hai của trường THPT Lục Ngạn số 1, biết mỗi phần thưởng là hai quyển sách khác loại?
Xem thêm các bài viết về công thức Toán hay, chi tiết khác:
- Quy tắc cộng
- Quy tắc nhân
- Công thức tính số hoán vị
- Công thức tính số chỉnh hợp
- Công thức khai triển nhị thức Newton
- Đề thi lớp 1 (các môn học)
- Đề thi lớp 2 (các môn học)
- Đề thi lớp 3 (các môn học)
- Đề thi lớp 4 (các môn học)
- Đề thi lớp 5 (các môn học)
- Đề thi lớp 6 (các môn học)
- Đề thi lớp 7 (các môn học)
- Đề thi lớp 8 (các môn học)
- Đề thi lớp 9 (các môn học)
- Đề thi lớp 10 (các môn học)
- Đề thi lớp 11 (các môn học)
- Đề thi lớp 12 (các môn học)
- Giáo án lớp 1 (các môn học)
- Giáo án lớp 2 (các môn học)
- Giáo án lớp 3 (các môn học)
- Giáo án lớp 4 (các môn học)
- Giáo án lớp 5 (các môn học)
- Giáo án lớp 6 (các môn học)
- Giáo án lớp 7 (các môn học)
- Giáo án lớp 8 (các môn học)
- Giáo án lớp 9 (các môn học)
- Giáo án lớp 10 (các môn học)
- Giáo án lớp 11 (các môn học)
- Giáo án lớp 12 (các môn học)