10 Đề thi Cuối kì 1 Toán 10 Kết nối tri thức (có đáp án)
Với bộ 10 Đề thi Cuối Học kì 1 Toán 10 năm 2024 có đáp án, chọn lọc được biên soạn bám sát nội dung sách Kết nối tri thức và sưu tầm từ đề thi Toán 10 của các trường THCS trên cả nước. Hi vọng bộ đề thi này sẽ giúp học sinh ôn tập và đạt kết quả cao trong các bài thi Học kì 1 Toán 10.
Chỉ từ 150k mua trọn bộ Đề thi Toán 10 Cuối kì 1 Kết nối tri thức bản word có lời giải chi tiết:
- B1: gửi phí vào tk:
0711000255837
- NGUYEN THANH TUYEN - Ngân hàng Vietcombank (QR) - B2: Nhắn tin tới Zalo VietJack Official - nhấn vào đây để thông báo và nhận đề thi
Sở Giáo dục và Đào tạo ...
Đề thi Học kì 1 - Kết nối tri thức
Năm học 2024 - 2025
Môn: Toán lớp 10
Thời gian làm bài: 90 phút
(không kể thời gian phát đề)
(Đề số 1)
I. Trắc nghiệm (7 điểm)
Câu 1. Trong các phát biểu sau, phát biểu nào không phải là mệnh đề?
A. 2 là số nguyên âm;
B. Bạn có thích học môn Toán không?
C. 13 là số nguyên tố;
D. Số 15 chia hết cho 2.
Câu 2. Trong các tập hợp sau, tập hợp nào là tập con của tập hợp A = {1; 2; 3; 4; 5}?
A. A1 = {1; 6};
B. A2 = {0; 1; 3};
C. A3 = {4; 5};
D. A3 = {0}.
Câu 3. Cho các tập hợp A = {x ∈ ℝ| – 5 ≤ x < 1} và B = {x ∈ ℝ| – 3 < x ≤ 3}. Tìm tập hợp A ∪ B.
A. A ∪ B = [– 5; 1);
B. A ∪ B = [– 5; 3];
C. A ∪ B = (– 3; 1);
D. A ∪ B = (– 3; 3].
Câu 4. Trong các cặp số sau, cặp nào không là nghiệm của hệ bất phương trình
A. (0; 0);
B. (1; 1);
C. (– 1; 1);
D. (– 1; – 1).
Câu 5. Mệnh đề nào sau đây đúng?
A. sin (180° – α) = – sin α;
B. cos (180° – α) = – cos α;
C. tan (180° – α) = tan α;
D. cot (180° – α) = cot α.
Câu 6. Tam giác ABC có BC = 1, AC = 3,= . Tính độ dài cạnh AB.
A. ;
B. ;
C. ;
D. .
Câu 7. Cho lục giác đều ABCDEF tâm O như hình vẽ bên. Vectơ cùng phương với vectơ nào sau đây?
A. ;
B. ;
C. ;
D. .
Câu 8. Mệnh đề nào sau đây sai:
Câu 9. Cho hình chữ nhật ABCD có AB = 4 cm, AD = 3 cm. Tính .
A. 5 cm;
B. 7 cm;
C. 9 cm;
D. 11 cm.
Câu 10. Cho G là trọng tâm của tam giác ABC và điểm M bất kỳ. Đẳng thức nào sau đây đúng?
Câu 11. Cho ba điểm A, B, C như hình vẽ:
Đẳng thức nào sau đây đúng?
Câu 12. Trong mặt phẳng tọa độ Oxy, cho .Tìm tọa độ của vectơ
A.;
B. ;
C. ;
D..
Câu 13. Trong mặt phẳng tọa độ, cặp vectơ nào sau đây cùng phương?
Câu 14. Cho hai vectơ và khác vectơ-không. Khẳng định nào sau đây là đúng?
Câu 15. Miền nghiệm của bất phương trình 2x – y + 6 ≤ 0 được biểu diễn là miền màu xanh trong hình ảnh nào sau đây ?
A.
B.
C.
D.
Câu 16. Cho tam giác ABC cân tại A có =. Khi đó sin B bằng:
A. ;
B.-;
C.;
D.-.
Câu 17. Cho góc α với 0° < α < 180°. Tính giá trị của cosα, biết .
Câu 18. Cho hình thoi ABCD. Vectơ – không có điểm đầu là A thì nó có điểm cuối là:
A. Điểm A;
B. Điểm B;
C. Điểm C;
D. Điểm D.
Câu 19. Cho tam giác ABC đều. Tính góc .
A. 90°;
B. 135°;
C. 90°;
D. 60°.
Câu 20. Cho tam giác ABC có: AB = 3, BC = 4, AC = 5. Tính .
A. 1;
B. 0;
C. 12;
D. 20.
Câu 21. Cho hai vectơ và đều khác . Biết: , và . Tính độ dài của vectơ .
A. 1;
B. 2;
C. ;
D. .
Câu 22. Một lực có độ lớn N tác động vào điểm M làm vật di chuyển theo phương nằm ngang từ M đến điểm N cách M một khoảng 10 m. Biết góc giữa và phương thẳng đứng là 30°. Tính công sinh bởi lực F.
A. 900 J;
B. 800 J;
C. 600 J;
D. J.
Câu 23. Cho giá trị gần đúng của là 1,73. Sai số tuyệt đối của số gần đúng 1,73 là:
A. 0,003;
B. 0,03;
C. 0,002;
D. 0,02.
Câu 24. Viết số quy tròn của số gần đúng b biết = 12 409,12 ± 0,5.
A. 12 410;
B. 12 409,1;
C. 12 000;
D. 12 409.
Câu 25. Tính số trung bình của mẫu số liệu sau:
2; 5; 8; 7; 10; 20; 11.
A. 8;
B. 9;
C. 10;
D. 11.
Câu 26. Tìm trung vị của mẫu số liệu sau:
0; 1; 2; 3; 5; 9; 10.
A. 3;
B. 5;
C. 0;
D. 2.
Câu 27. Số lượng học sinh đăng kí thi môn cầu lông các lớp từ lớp 6 đến lớp 9 được thống kê trong bảng dưới đây:
Lớp |
6 |
7 |
8 |
9 |
Số lượng |
20 |
25 |
22 |
15 |
Tìm mốt trong mẫu số liệu trên.
A. 6;
B. 7;
C. 8;
D. 9.
Câu 28. Cho mẫu số liệu sau:
5; 2; 9; 10; 15; 5; 20.
Tứ phân vị Q1, Q2, Q3 của mẫu số liệu trên lần lượt là:
A. 2; 5; 9;
B. 5; 9; 15;
C. 10; 5; 15;
D. 2; 9; 15.
Câu 29. Cho mẫu số liệu sau:
12; 5; 8; 11; 6; 20; 22.
Tính khoảng biến thiên của mẫu số liệu trên.
A.16;
B. 17;
C. 18;
D. 19.
Câu 30. Khoảng tứ phân vị ∆Q là
A. Q2 – Q1;
B. Q3 – Q1;
C. Q3 – Q2;
D. (Q1 + Q3) : 2.
Câu 31. Cho mẫu số liệu sau:
5; 6; 12; 2; 5; 17; 23; 15; 10.
Tính khoảng tứ phân vị của mẫu số liệu trên.
A. 8;
B. 9;
C. 10;
D. 11.
Câu 32. Cho mẫu số liệu sau:
10; 3; 6; 9; 15.
Tìm độ lệch chuẩn của mẫu số liệu trên (làm tròn đến hàng phần trăm).
A. 3,03;
B. 4,03;
C. 5,03;
D. 6,03.
Câu 33. Cho tam giác đều ABC cạnh 4. Vectơ có độ dài là.
A. 2;
B. 4;
C. 3;
D. 6.
Câu 34. Cho hình bình hành ABCD. Gọi M, N lần lượt là hai điểm nằm trên hai cạnh AB và CD sao cho AB = 3AM, CD = 2CN. Biểu diễn vectơ qua các vectơ và .
Câu 35. Trong mặt phẳng tọa độ Oxy cho ba điểm A(2; 1), B(1; 10) và điểm C(m; 2m – 17). Tất cả các giá trị của tham số m sao cho AB vuông góc với OC là
A. m = 9;
B. m = ±9;
C. m = – 9;
D. m = 1.
II. Tự luận (3 điểm)
Bài 1. Từ hai vị trí A và B của một tòa nhà, người ta quan sát đỉnh C của ngọn núi. Biết rằng độ cao AB = 70 m, phương nhìn AC tạo với phương nằm ngang góc 30°, phương nhìn BC tạo với phương nằm ngang góc 15°30'. Ngọn núi đó có độ cao so với mặt đất là bao nhiêu (làm tròn đến hàng phần trăm)?
Bài 2. Cho tam giác đều ABC có độ dài cạnh bằng a. Trên các cạnh BC, CA, AB lần lượt lấy các điểm N, M, P sao cho . Tìm giá trị của x theo a để đường thẳng AN vuông góc với đường thẳng PM.
Bài 3. Một cảnh sát giao thông ghi lại tốc độ (đơn vị: km/h) của 25 xe qua trạm như sau:
20 |
41 |
41 |
80 |
40 |
52 |
52 |
52 |
60 |
55 |
60 |
60 |
62 |
60 |
55 |
60 |
55 |
90 |
70 |
35 |
40 |
30 |
30 |
80 |
25 |
|
Tìm các số liệu bất thường (nếu có) trong mẫu số liệu trên.
Ma trận đề kiểm tra cuối học kỳ 1
Câu hỏi trắc nghiệm: 35 câu (70%)
Câu hỏi tự luận: 3 câu (30%)
TT |
Nội dung kiến thức |
Đơn vị kiến thức |
Mức độ nhận thức |
Tổng |
% tổng điểm |
|||||||||
Nhận biết |
Thông hiểu |
Vận dụng |
Vận dụng cao |
Số CH |
Thời gian (phút) |
|||||||||
Số CH |
Thời gian (phút) |
Số CH |
Thời gian (phút) |
Số CH |
Thời gian (phút) |
Số CH |
Thời gian (phút) |
TN |
TL |
|||||
1 |
1. |
1.1. Mệnh đề |
1 |
1,5 |
|
|
|
|
|
|
1 |
|
|
|
1.2. Tập hợp và các phép toán trên tập hợp |
1 |
1,5 |
1 |
2 |
|
|
|
|
2 |
|
||||
2 |
2. |
2.1. Bất phương trình bậc nhất hai ẩn |
|
|
1 |
2 |
|
|
|
|
1 |
|
|
|
2.2. Hệ bất phương trình bậc nhất hai ẩn |
1 |
2 |
|
|
|
|
|
|
1 |
|
||||
3 |
3. |
3.1. Giá trị lượng giác của một góc từ 0° đến 180° |
2 |
3 |
1 |
2 |
|
|
|
|
3 |
|
|
|
3.2. Hệ thức lượng trong tam giác |
|
|
1 |
2 |
1 |
8 |
|
|
1 |
1 |
|
|||
4 |
4. |
4.1. Các khái niệm mở đầu |
2 |
3 |
|
|
|
|
1 |
11 |
2 |
1 |
|
|
4.2. Tổng và hiệu của hai vectơ |
2 |
3 |
1 |
2 |
|
|
3 |
|
||||||
4.3. Tích của một vectơ với một số |
2 |
3 |
2 |
4 |
|
|
4 |
|
||||||
4.4. Vectơ trong mặt phẳng tọa độ |
2 |
4 |
1 |
2 |
|
|
3 |
|
||||||
4.5. Tích vô hướng của hai vectơ |
2 |
4 |
2 |
4 |
|
|
4 |
|
||||||
5 |
5. |
5.1. Số gần đúng và sai số |
1 |
1 |
1 |
2 |
1 |
8 |
|
|
2 |
1 |
|
|
5.2. Các số đặc trưng đo xu thế trung tâm |
2 |
3 |
2 |
4 |
|
|
4 |
|
||||||
5.3. Các số đặc trưng đo độ phân tán |
2 |
4 |
2 |
4 |
|
|
4 |
|
||||||
Tổng |
|
20 |
33 |
15 |
30 |
2 |
16 |
1 |
11 |
35 |
3 |
|
||
Tỉ lệ (%) |
|
40 |
30 |
20 |
10 |
|
|
|
100 |
|||||
Tỉ lệ chung (%) |
|
70 |
30 |
|
|
100 |
Lưu ý:
- Các câu hỏi ở cấp độ nhận biết và thông hiểu là các câu hỏi trắc nghiệm khách quan 4 lựa chọn, trong đó có duy nhất 1 lựa chọn đúng.
- Các câu hỏi ở cấp độ vận dụng và vận dụng cao là các câu hỏi tự luận.
- Số điểm tính cho 1 câu trắc nghiệm là 0,2 điểm/câu; số điểm của câu tự luận được quy định trong hướng dẫn chấm nhưng phải tương ứng với tỉ lệ điểm được quy định trong ma trận.
- Trong nội dung kiến thức:
+ (1*): Chỉ được chọn một câu mức độ vận dụng ở một trong các nội dung 2.2, 2.3 hoặc 3.2.
+ (1**): Chỉ được chọn một câu mức độ vận dụng ở một trong các nội dung 5.1, 5.2 hoặc 6.1, 6.2, 6.3.
+ (1***): chỉ được chọn một câu mức độ vận dụng cao ở một trong các nội dung 2 hoặc 4 hoặc 6 hoặc 7 hoặc 8.
BẢNG ĐẶC TẢ KĨ THUẬT ĐỀ THI CUỐI HỌC KỲ 1
MÔN: TOÁN – THỜI GIAN LÀM BÀI: 90 phút
TT |
Nội dung kiến thức |
Đơn vị kiến thức |
Mức độ kiến thức, kĩ năng cần kiểm tra, đánh giá |
Số câu hỏi theo mức độ nhận thức |
|||
Nhận biết |
Thông hiểu |
Vận dụng |
Vận dụng cao |
||||
1 |
1. |
1.1. Bài 1: Mệnh đề |
Nhận biết: + Nhận biết mệnh đề; mệnh đề chứa biến. + Nhận biết mệnh đề kéo theo, mệnh đề tương đương.
|
1 |
|
|
|
1.2. Bài 2: Tập hợp và các phép toán trên tập hợp |
Nhận biết: + Nhận biết phần tử thuộc hoặc không thuộc tập hợp; + Liệt kê các phần tử của một tập hợp; + Xác định tập con của tập hợp số cho trước.
Thông hiểu: + Tìm số tập hợp con của tập hợp số cho trước; + Tìm phần giao, hợp, phần bù của hai tập hợp số. |
1 |
1 |
|
|
||
2 |
2. |
2.1. Bài 3: Bất phương trình bậc nhất hai ẩn |
Thông hiểu: + Xác định đúng miền nghiệm của bất phương trình bậc nhất 2 ẩn; + Xác định bất phương trình dựa vào các dữ liệu liên quan.
|
|
1 |
|
|
2.2. Bài 4: Hệ bất phương trình bậc nhất hai ẩn |
Nhận biết: + Xác định hệ bất phương trình bậc nhất hai ẩn; + Chỉ ra được cặp số (x; y) nào không phải là nghiệm của hệ bất phương trình bậc nhất hai ẩn. |
1 |
|
|
|
||
3 |
3 |
3.1. Bài 5: Giá trị lượng giác của góc từ 0° đến 180° |
Nhận biết: + Quan hệ giữa các giá trị lượng giác của 2 cung bù nhau (Công thức); + Xác định giá trị lượng giác của một góc cho trước. |
2 |
1 |
|
|
3.2. Bài 6: Hệ thức lượng trong tam giác |
Thông hiểu: + Tính được cạnh thứ ba khi biết độ dài 2 cạnh và 1 góc xen giữa của một tam giác. + Tính số đo của một góc khi biết độ dài 3 cạnh Vận dụng: + Áp dụng các hệ thức lượng trong tam giác để giải bài toán thực tế. |
|
1 |
1 |
|
||
4 |
4. |
4.1. Bài 7: Các khái niệm mở đầu |
Nhận biết: + Khái niệm 2 vectơ cùng phương. + Xác định 2 vectơ cùng phương dựa vào hình vẽ. |
2 |
|
|
1 |
4.2. Bài 8: Tổng và hiệu của hai vectơ |
Nhận biết: + Nhận biết quy tắc 3 điểm, quy tắc hình bình hành của phép cộng phép trừ. Thông hiểu: + Tính độ dài của tổng hai vectơ. + Xác định vị trí của điểm trong mặt phẳng thỏa mãn đẳng thức vectơ.
|
2 |
1 |
|
|||
4.3. Bài 9: Tích một vectơ với một số |
Nhận biết: + Nhận biết đẳng thức vectơ liên quan đến trọng tâm của tam giác. + Nhận biết sự liên quan của vectơ và tích của nó với số thực k. Thông hiểu: + Xác định mối quan hệ giữa hai vectơ bằng đẳng thức khi cho hình vẽ. + Phân tích vec tơ qua 2 vectơ ở mức độ đơn giản. |
2 |
2 |
|
|||
4.4. Bài 10: Vecto trong mặt phẳng tọa độ |
Nhận biết: + Nhận biết tọa độ của vectơ khi biểu thị vectơ đó theo 2 vectơ đơn vị của hệ trục tọa độ Oxy. + Tìm tọa độ của vectơ khi cho tọa độ điểm đầu và điểm cuối. Thông hiểu: + Xác định được mối quan hệ bằng nhau, cùng phương giữa các vectơ thông qua tọa độ của chúng. + Tìm tọa độ điểm sử dụng tính chất trọng tâm, trung điểm hoặc đẳng thức vectơ. |
2 |
1 |
|
|||
4.5. Bài 11: Tích vô hướng của hai vectơ
|
Nhận biết: + Nhận biết được công thức tính tích vô hướng của hai vectơ. + Tính tích vô hướng của hai vectơ trong trường hợp đặc biệt về góc. Thông hiểu: + Tìm được góc giữa hai vectơ (trong tam giác vuông hoặc đều). + Xác định được tích vô hướng của hai vectơ có tọa độ cho trước. + Tìm điều kiện để hai vectơ vuông góc sử dụng biểu thức tọa độ. Vận dụng cao: Bài toán tổng hợp về vectơ. |
2 |
2 |
|
|||
5 |
5. |
5.1. Bài 12: Số gần đúng và sai số |
Nhận biết: + Chỉ ra được số quy tròn với độ chính xác d cho trước (d ở hàng trăm) + Tìm sai số tuyệt đối hoặc độ chính xác của số gần đúng. |
1 |
1 |
|
|
5.2. Bài 13: Các số đặc trưng đo xu thế trung tâm |
Nhận biết: + Chỉ ra được số trung vị với bảng số liệu đã sắp xếp. + Tìm tứ phân vị, mốt của bảng số liệu cho trước.
|
2 |
2 |
1 |
|
||
5.3. Bài 14: Các số đặc trưng đo độ phân tán |
Nhận biết: + Chỉ ra được khoảng biến thiên của một mẫu số liệu. + Tìm độ phân tán của bảng số liệu. Thông hiểu: + Tìm được khoảng tứ phân vị cho mẫu số liệu (với bảng số liệu có 9 hoặc 10 số). + Tìm phương sai, độ lệch chuẩn. Vận dụng: Tìm giá trị bất thường của mẫu số liệu. |
2 |
2 |
||||
Tổng |
|
20 |
15 |
2 |
1 |
Sở Giáo dục và Đào tạo ...
Đề thi Học kì 1 - Kết nối tri thức
Năm học 2024 - 2025
Môn: Toán lớp 10
Thời gian làm bài: 90 phút
(không kể thời gian phát đề)
(Đề số 2)
I. Trắc nghiệm (7 điểm)
Câu 1. Trong các câu dưới đây, câu nào là mệnh đề?
A. Có ai ở trong đó không?;
B. Bạn có thấy đói không?;
C. Đừng lại gần tôi!;
D. Số 25 không phải là số nguyên tố.
Câu 2. Cho tập hợp A = {2; 4; 6; 8}. Số tập con của tập hợp A là?
A. 15;
B. 16;
C. 17;
D. 18.
Câu 3. Cho tập hợp K = [1 ; 7) \ (– 3 ; 5). Khẳng định nào sau đây đúng ?
A. K = [1; 7);
B. K = (– 3; 7);
C. K = [1; 5);
D. K = [5; 7).
Câu 4. Miền nghiệm của bất phương trình x – y + 5 ≥ 0 được biểu diễn là miền màu xanh trong hình ảnh nào sau đây ?
A.
B.
C.
D.
Câu 5. Cặp số nào sau đây là nghiệm của hệ bất phương trình bậc nhất hai ẩn ?
A. (3; 5);
B. (1; –1);
C. (2; 5);
D. (3; 4).
Câu 6. Chọn phương án SAI trong các phương án dưới đây?
A. sin 0° = 0;
B. cos 90° = 0;
C. cos 0° = 1;
D. sin 90° = 0.
Câu 7. Cho β là góc tù. Tìm khẳng định đúng trong các khẳng định dưới đây?
A. cos β > 0;
B. sin β > 0;
C. tan β > 0;
D. cot β > 0.
Câu 8. Cho góc α thỏa mãn và 90° < α < 180°. Tính cosα.
Câu 9. Cho tam giác ABC biết và . Tính AC.
Câu 10. Cho hình bình hành ABCD có K là giao điểm hai đường chéo như hình vẽ.
Khẳng định nào sau đây là đúng ?
Câu 11. Cho hình bình hành ABCD có AB = 4 cm. Tính độ dài vectơ .
A. 1 cm;
B. 3 cm;
C. 4 cm;
D. 2 cm
Câu 12. Cho các điểm A, B, C phân biệt. Đẳng thức nào sau đây đúng ?
Câu 13. Cho hình bình hành ABCD với giao điểm hai đường chéo là I. Khi đó:
Câu 14. Cho hình vuông ABCD cạnh 2a. Tính .
A. ;
B. a;
C. ;
D. 2a.
Câu 15. Cho tứ giác ABCD. Gọi E, F lần lượt là trung điểm của AB, CD, O là trung điểm của EF. Khẳng định nào sau đây là đúng ?
Câu 16. Cho tam giác ABC. Đặt , . M thuộc cạnh AB sao cho AB = 3AM, N thuộc tia BC và CN = 2BC. Phân tích qua các vectơ và ta được biểu thức là:
Câu 17. Cho các vectơ và không cùng phương và , và . Khẳng định nào sau đây là đúng ?
Câu 18. Cho tam giác ABC có điểm I nằm trên cạnh AC sao cho , J là điểm thỏa mãn . Ba điểm nào sau đây thẳng hàng ?
A. I, J, C;
B. I, J, B;
C. I, A, B;
D. I, G, B.
Câu 19. Cho tam giác ABC vuông tại A có: AB = 4, BC = 8. Tính .
A. 90°;
B. 60°;
C. 30°;
D. 45°.
Câu 20. Cho hai vectơ và đều khác . Biết: , và . Tính độ dài của vectơ .
A. 1;
B. 2;
C. ;
D. .
Câu 21. Cho tam giác ABC đều cạnh a. Tính .
A. a;
B. 0;
C. a2;
D. .
Câu 22. Cho hình thang ABCD với hai đáy là AB, CD có: . Khẳng định nào sau đây là đúng ?
A. BD vuông góc với AC;
B. AB vuông góc với AC;
C. AB vuông góc với DC;
D. BD vuông góc với DC.
Câu 23. Cho giá trị gần đúng của là 0,35. Sai số tuyệt đối của số gần đúng 0,35 là:
A. 0,003;
B. 0,03;
C. 0,0029;
D. 0,02.
Câu 24. Hãy viết số quy tròn của số gần đúng a = 15,318 biết = 15,318 ± 0,05.
A. 15,3;
B. 15,31;
C. 15,32;
D. 15,4.
Câu 25. Số lượng khách từ ngày thứ nhất đến ngày thứ 10 của một nhà hàng mới mở được thống kê ở bảng sau:
Ngày |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
Số khách |
11 |
9 |
7 |
5 |
15 |
20 |
9 |
6 |
17 |
13 |
Tính số khách trung bình từ bảng số liệu trên.
A. 9,2;
B. 10,2;
C. 11,2;
D. 12,2.
Câu 26. Tìm trung vị của mẫu số liệu sau:
1; 0; 5; 10; 2; 3; 9.
A. 3;
B. 5;
C. 0;
D. 2.
Câu 27. Cho mẫu số liệu sau:
1; 9; 12; 10; 2; 9; 15; 11; 20; 17.
Tứ phân vị Q1, Q2, Q3 của mẫu số liệu trên lần lượt là:
A. 9; 11; 15;
B. 2; 10,5; 15;
C. 10; 12,5; 15;
D. 9; 10,5; 15.
Câu 28. Cho mẫu số liệu sau:
2; 5; 9; 12; 15; 5; 20.
Tìm mốt của mẫu số liệu trên.
A. 5;
B. 9;
C. 12;
D. 20.
Câu 29. Cho mẫu số liệu sau:
15; 26; 5; 2; 9; 5; 28; 30; 2; 26.
Tính khoảng biến thiên của mẫu số liệu trên.
A.26;
B. 28;
C. 30;
D. 32.
Câu 30. Cho mẫu số liệu sau:
2; 9; 12; 16; 3; 5; 12; 33; 24; 27.
Tính khoảng tứ phân vị của mẫu số liệu trên.
A. 17;
B. 18;
C. 19;
D. 20.
Câu 31. Cho mẫu số liệu sau:
12; 2; 6; 13; 9; 21.
Tìm phương sai của mẫu số liệu trên (làm tròn đến hàng phần trăm).
A. 35,85;
B. 34,85;
C. 34,58;
D. 35,58.
Câu 32. Cho mẫu số liệu sau:
24; 16; 12; 5; 9; 3.
Tìm độ lệch chuẩn của mẫu số liệu trên (làm tròn đến hàng phần trăm).
A. 7,04;
B. 8,04;
C. 7,55;
D. 8,55.
Câu 33. Trong mặt phẳng tọa độ Oxy, cho điểm A(1; 2) và B(3; – 1). Độ dài vectơ là:
A. 5;
B. 3;
C. ;
D. .
Câu 34. Trong mặt phẳng tọa độ, cho . Khi đó tọa độ của vectơ là
Câu 35. Góc giữa vectơ và vectơ có số đo bằng:
A. 90°;
B. 0°;
C. 135°;
D. 45°.
II. Tự luận (3 điểm)
Bài 1. Để làm đường điện dây cao thế ở Hà Giang từ vị trí bản A đến bản B, người ta phải tránh một ngọn núi nên người ta phải nối thẳng đường dây từ bản A đến bản C dài 12 km rồi nối từ bản C đến bản B dài 8 km. Qua đo đạc người ta xác định được . Hỏi so với việc nối thẳng từ bản A đến bản B, người ta tốn thêm bao nhiêu tiền, biết mỗi km dây có giá 150 000 đồng.
Bài 2. Cho tam giác ABC vuông tại A có AB = a, AC = 2a. Gọi M là trung điểm của BC, điểm D thuộc AC sao cho . Chứng minh rằng BD vuông góc với AM.
Bài 3. Cho mẫu số liệu sau đây:
2; 5; 1; 2; 8; 5; 45; 3.
Tìm giá trị ngoại lệ của mẫu số liệu trên?
Sở Giáo dục và Đào tạo ...
Đề thi Học kì 1 - Kết nối tri thức
Năm học 2024 - 2025
Môn: Toán lớp 10
Thời gian làm bài: 90 phút
(không kể thời gian phát đề)
(Đề số 3)
I. Trắc nghiệm (4 điểm)
Câu 1. Câu nào sau đây không phải là một mệnh đề?
A. “19 là số nguyên tố”;
B. “Tam giác vuông có một trung tuyến bằng nửa cạnh huyền”;
C. “Các em lớp 10D hãy cố gắng học tập thật tốt nhé!”;
D. “Mọi hình thoi đều nội tiếp được đường tròn”.
Câu 2. Cho tập A = {0; 1; 2} và tập B = {0; 1; 2; 3; 4; 5}. Có bao nhiêu tập hợp X thỏa mãn: A ⊂ X ⊂ B?
A. 7;
B. 6;
C. 9;
D. 8.
Câu 3. Cặp số (x; y) = (2021; 3)là một nghiệm của bất phương trình nào sau đây?
A. – 2x + 3y – 1 > 0;
B. x – y < 0;
C. 4x ≤ 3y;
D. x – 3y + 7 ≥ 0.
Câu 4. Miền không bị gạch chéo (kể cả đường thẳng d1 và d2) là miền nghiệm của hệ bất phương trình nào?
A. ;
B. ;
C. ;
D. .
Câu 5. Cho góc α với 90° < α < 180°. Khẳng định nào sau đây đúng?
A. sin α và cot α cùng dấu;
B. Tích sin α . cot α mang dấu âm;
C. Tích sin α . cos α mang dấu dương;
D. sin α và tan α cùng dấu.
Câu 6. Cho tam giác ABC có b = 7, c = 5, cos = . Độ dài đường cao ha của tam giác ABC là
A. ;
B. 8;
C. ;
D. .
Câu 7. Cho hình vuông ABCD, câu nào sau đây là đúng?
A. ;
B. ;
C. ;
D. .
Câu 8. Cho 4 điểm bất kỳ A, B, C, D. Đẳng thức nào sau đây là đúng:
A. ;
B. ;
C. ;
D. .
Câu 9.Cho tam giác OAB vuông cân tạiO với OA = OB = a. Độ dài của vectơ là:
A. ;
B. ;
C. ;
D. .
Câu 10. Trong hệ tọa độ Oxy,cho A(5; 2), B(10; 8).Tìm tọa độ của vectơ ?
A. (15; 10);
B. (2; 4);
C. (5; 6);
D. (50; 16).
Câu 11. Cho hai vectơ và thỏa mãn = 3, = 2 và = -3. Xác định góc α giữa hai vectơ và .
A. α = 30°;
B. α = 45°;
C. α = 60°;
D. α = 120°.
Câu 12. Cho giá trị gần đúng của là 0,47. Sai số tuyệt đối của số 0,47 là
A. 0,001;
B. 0,002;
C. 0,003;
D. 0,004.
Câu 13. Số quy tròn của số a với độ chính xác d được cho sau đây = 17 658 ± 16 là
A. 18 000;
B. 17 800;
C. 17 600;
D. 17 700.
Câu 14. Các giá trị xuất hiện nhiều nhất trong mẫu số liệu được gọi là
A. Mốt;
B. Số trung bình;
C. Số trung vị;
D. Độ lệch chuẩn.
Câu 15. Một tổ gồm 10 học sinh có điểm kiểm tra giữa học kì 1 môn toán như sau:
7; 5; 6; 6; 6; 8; 7; 5; 6; 9.
Tính điểm trung bình của tổ học sinh đó.
A. 7;
B. 8;
C. 7,3;
D. 7,5.
Câu 16. Cho bảng số liệu thống kê chiều cao của một nhóm học sinh như sau:
150 |
153 |
153 |
154 |
154 |
155 |
160 |
160 |
162 |
162 |
163 |
163 |
163 |
165 |
165 |
167 |
Số trung vị của bảng số liệu nói trên là
A. 161;
B. 154;
C. 163;
D. 156.
Câu 17. Chọn khẳng định sai trong các khẳng định sau:
A. Phương sai luôn là một số không âm;
B. Phương sai là bình phương của độ lệch chuẩn;
C. Phương sai càng lớn thì độ phân tán quanh số trung bình càng lớn;
D. Phương sai luôn lớn hơn độ lệch chuẩn.
Câu 18. Cho mẫu số liệu thống kê:
135; 126; 176; 178; 111; 102; 167; 123; 124.
Khoảng biến thiên của mẫu số liệu trên là
A. 76;
B. 77;
C. 78;
D. 79.
Câu 19. Khoảng tứ phân vị của mẫu số liệu ở Câu 18 là
A. 53,5;
B. 54,5;
C. 55,5;
D. 56,5.
Câu 20. Một mẫu số liệu có phương sai là 0,01. Độ lệch chuẩn của mẫu số liệu là
A. 0,0001;
B. 0,001;
C. 0,01;
D. 0,1.
II. Tự luận (6 điểm)
Bài 1. (1 điểm) Cho A = (– 3; 5], B = (– ∞; 2]. Tìm A ∩ B, A ∪ B, A \ B, CℝA.
Bài 2. (1 điểm) Khuôn viên của trường THPT An Nam có dạng hình tứ giác ABCD có kích thước các cạnh AB, BC, CD, DA lần lượt là 6,67; 7,25; 6,1; 9,1 và = 115° (xem hình dưới). Tính gần đúng diện tích khuôn viên đất đó (làm tròn kết quả đến hàng phần trăm).
Bài 3. (2 điểm) Cho ba điểm A(; -1), B(0; 3) và A(; 3).
a) Tìm đỉnh thứ tư của hình bình hành ABCD.
b) Tìm .
Bài 4. (2 điểm) Mẫu số liệu sau đây cho biết sản lượng lúa (đơn vị tạ) của 10 thửa ruộng thí nghiệm có cùng diện tích.
10,5 21,3 22,1 22,2 23,4 23,4 20,5 24,2 24,2 23,0
a) Tính số trung bình, trung vị, khoảng biến thiên, khoảng tứ phân vị và độ lệch chuẩn của mẫu số liệu trên.
b) Tìm các giá trị bất thường (nếu có) của mẫu số liệu trên.
-----HẾT-----
Sở Giáo dục và Đào tạo ...
Đề thi Học kì 1 - Kết nối tri thức
Năm học 2024 - 2025
Môn: Toán lớp 10
Thời gian làm bài: 90 phút
(không kể thời gian phát đề)
(Đề số 4)
I. Trắc nghiệm (5 điểm)
Câu 1. Phát biểu mệnh đề phủ định của mệnh đề “∀n ∈ ℕ, n2 – 5n + 9 ≠ 0”.
A. “∃n ∈ ℕ, n2 – 5n + 9 ≤ 0”;
B. “∃n ∈ ℕ, n2 – 5n + 9 ≥ 0”;
C. “∃n ∈ ℕ, n2 – 5n + 9 = 0”;
D. “∃n ∈ ℕ, n2 – 5n + 9 ≠ 0”.
Câu 2. Cho hai tập hợp A = (– 3; 7] và B = [5; 9). Tập hợp A ∩ B là
A. [5; 7];
B. (5; 7);
C. (– 3; 9);
D. [– 3; 9].
Câu 3. Bất phương trình bậc nhất hai ẩn nào dưới đây có miền nghiệm như hình vẽ dưới đây? (kể cả đường thẳng)
A. x – 2y + 4 ≥ 0;
B. x + y – 3 < 3;
C. x + y – 3 > 0;
D. x – 2y + 4 ≤ 0.
Câu 4. Phần không gạch chéo ở hình sau đây là biểu diễn miền nghiệm của hệ bất phương trình nào trong bốn hệ A, B, C, D ?
A. ;
B. ;
C. ;
D. .
Câu 5. Cho tam giác ABC có độ dài các cạnh AB = c, AC = b, BC = a. Đặt p = , S = . Gọi r, R lần lượt là bán kính đường tròn nội, ngoại tiếp tam giác ABC. Khẳng định nào sau đây sai?
A. S = ;
B. S = pr;
C. S = absinC;
D. S = .
Câu 6. Cho sin α = . Tính giá trị biểu thức P = 3sin2 α + cos2 α.
A. P = ;
B. P = ;
C. P = ;
D. P = .
Câu 7. Cho lục giác đều ABCDEF tâm O. Hãy tìm các vectơ khác vectơ-không có điểm đầu, điểm cuối là đỉnh của lục giác và tâm O sao cho bằng với ?
A. ;
B. ;
C. ;
D. .
Câu 8. Cho Cho hình bình hành ABCD tâm O. Đẳng thức nào sau đây đúng?
A. ;
B. ;
C. ;
D. .
Câu 9.Cho hai vectơ và không cùng phương. Hai vectơ nào sau đây là cùng phương?
A. và ;
B. và ;
C. và ;
D. và .
Câu 10.Cho = (3; -4), = (-1; 2). Tìm tọa độ của .
A. (– 4; 6);
B. (2; – 2);
C. (4; – 6);
D. (– 3; – 8).
Câu 11. Cho tam giác ABC có tọa độ ba đỉnh lần lượt là A(2; 3), B(5; 4), C(2; 2). Tọa độ trọng tâm G của tam giác có tọa độ là
A. (3; 3);
B. (2; 2);
C. (1; 1);
D. (4; 4).
Câu 12.Trên đường thẳng chứa cạnh BC của tam giác ABC lấy một điểm M sao cho . Khi đó đẳng thức nào sau đây đúng?
A. ;
B. ;
C. ;
D. .
Câu 13. Cho đoạn thẳng AB, M là điểm thỏa . Mệnh đề nào sau đây đúng?
A. M là trung điểm AB ;
B. M trùng A;
C. M trùng B;
D. A là trung điểm MB.
Câu 14.Cho đường tròn tâm O. Từ điểm A nằm ngoài (O), kẻ hai tiếp tuyến AB, AC tới (O). Xét mệnh đề:
(I) ;
(II) ;
(III) .
Mệnh đề đúng là:
A. Chỉ (I);
B. (I) và (III);
C. (I), (II), (III);
D. Chỉ (III).
Câu 15. Tam giác ABC có a = 21, b = 17, c = 10. Diện tích của tam giác ABC bằng:
A. S = 16;
B. S = 24;
C. S = 48;
D. S = 84.
Câu 16. Cho tam giác ABC cân tại A, = 120° và AB = a. Tính .
A. ;
B. ;
C. ;
D. .
Câu 17. Cho A(2; 5), B(1; 3), C(5; – 1). Tìm tọa độ điểm K sao cho .
A. K(– 4; 5);
B. K(4; – 5);
C. K(4; 5);
D. K(– 4; – 5).
Câu 18. Cho hai vectơ và có = 4, = 5 và = 120°. Tính .
A. ;
B. ;
C. 21;
D. 61.
Câu 19. Cho giá trị gần đúng của là 0,429. Sai số tuyệt đối của số 0,429 là
A. 0,0001;
B. 0,0002;
C. 0,0004;
D. 0,0005.
Câu 20. Số quy tròn của số gần đúng a với độ chính xác d trong trường hợp = 2,4653245 ± 0,006 là
A. 2,46;
B. 2,47;
C. 2,5;
D. 2,465.
Câu 21. Điểm kiểm tra môn Toán của 24 học sinh được ghi lại trong bảng sau:
7 |
2 |
3 |
5 |
8 |
2 |
8 |
5 |
8 |
4 |
9 |
6 |
6 |
1 |
9 |
3 |
6 |
7 |
3 |
6 |
6 |
7 |
2 |
9 |
Mốt của mấu số liệu trên là
A. 2;
B. 6;
C. 7;
D. 9.
Câu 22. Cho mẫu số liệu:
1 1 3 6 7 8 8 9 10
Số trung bình của mẫu số liệu trên gần nhất với số nào dưới đây?
A. 7,5;
B. 7;
C. 6,5;
D. 5,9.
Câu 23. Tứ phân vị thứ ba của mẫu số liệu ở Câu 22 là
A. 2;
B. 7;
C. 8,5;
D. 9.
Câu 24. Cho phương sai của mẫu số liệu bằng 4. Độ lệch chuẩn của mẫu số liệu là
A. 4;
B. 2;
C. 16;
D. 8.
Câu 25. Mẫu số liệu sau cho biết số ghế trống tại một rạp chiếu phim trong 10 ngày:
7 9 13 20 40 7 18 19 21 25
Khoảng biến thiên của mẫu số liệu là
A. 33;
B. 23;
C. 13;
D. 3.
II. Tự luận (5 điểm)
Bài 1. (1 điểm) Cho hai tập hợp A = (0; 3), B = (2; 4). Xác định A ∪ B, A ∩ B, A \ B và CℝA.
Bài 2. (1 điểm) Từ hai điểm A và B của một tòa nhà, người ta quan sát điểm pháo hoa nổ. Biết rằng AB = 120 m, phương nhìn AC tạo với phương ngang một góc 45°, phương nhìn BC tạo với phương ngang góc 15°30'.
Hỏi điểm pháo hoa nổ cao so với mặt đất bao nhiêu?
Bài 3. (1 điểm) Cho tam giác ABC vuông tại A có AB = a, AC = 2a. Gọi M là trung điểm của BC, điểm D thuộc AC sao cho AD = . Chứng minh rằng BD vuông góc với AM.
Bài 4. (2 điểm) Điểm kiểm tra môn Toán của hai bạn Trung và Long trong 6 lần thi thử được thống kê trong bảng dưới đây:
Lần
Tên |
1 |
2 |
3 |
4 |
5 |
6 |
Trung |
5 |
8 |
7 |
6 |
9 |
8 |
Long |
8 |
4 |
6 |
8 |
9 |
6 |
a) Tính điểm trung bình của mỗi bạn.
b) Sử dụng kiến thức về khoảng biến thiên, khoảng tứ phân vị, độ lệch chuẩn xác định xem điểm bạn nào ổn định hơn?
-----HẾT-----
Xem thêm bộ đề thi Toán 10 Kết nối tri thức năm 2024 hay khác:
Lời giải bài tập lớp 10 sách mới:
- Giải bài tập Lớp 10 Kết nối tri thức
- Giải bài tập Lớp 10 Chân trời sáng tạo
- Giải bài tập Lớp 10 Cánh diều
- Giáo án lớp 10 (các môn học)
- Giáo án điện tử lớp 10 (các môn học)
- Giáo án Ngữ văn 10
- Giáo án Toán 10
- Giáo án Tiếng Anh 10
- Giáo án Vật Lí 10
- Giáo án Hóa học 10
- Giáo án Sinh học 10
- Giáo án Lịch Sử 10
- Giáo án Địa Lí 10
- Giáo án Kinh tế Pháp luật 10
- Giáo án Tin học 10
- Giáo án Công nghệ 10
- Giáo án Giáo dục quốc phòng 10
- Giáo án Hoạt động trải nghiệm 10
- Đề thi lớp 10 (các môn học)
- Đề thi Ngữ Văn 10 (có đáp án)
- Chuyên đề Tiếng Việt lớp 10
- Đề cương ôn tập Văn 10
- Đề thi Toán 10 (có đáp án)
- Đề thi cương ôn tập Toán 10
- Đề thi Toán 10 cấu trúc mới (có đáp án)
- Đề thi Tiếng Anh 10 (có đáp án)
- Đề thi Vật Lí 10 (có đáp án)
- Đề thi Hóa học 10 (có đáp án)
- Đề thi Sinh học 10 (có đáp án)
- Đề thi Lịch Sử 10 (có đáp án)
- Đề thi Địa Lí 10 (có đáp án)
- Đề thi Kinh tế & Pháp luật 10 (có đáp án)
- Đề thi Tin học 10 (có đáp án)
- Đề thi Công nghệ 10 (có đáp án)
- Đề thi Giáo dục quốc phòng 10 (có đáp án)