Các dạng bài tập Hình học lớp 11 chọn lọc có lời giải
Bài viết Các dạng bài tập Hình học lớp 11 chọn lọc với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Các dạng bài tập Hình học lớp 11 chọn lọc.
VietJack giới thiệu tài liệu Chuyên đề bài tập Toán 11 (dạy thêm) và Bài tập Toán 11 (dạy thêm) với đầy đủ các dạng bài tập có lời giải chi tiết:
Xem thử Chuyên đề dạy thêm Toán 11 KNTT Xem thử Bài tập Toán 11 KNTT (dạy thêm) Xem thử Chuyên đề dạy thêm Toán 11 CD Xem thửBài tập Toán 11 CD (dạy thêm)
Chỉ từ 500k mua trọn bộ Chuyên đề Bài tập Toán 11 (dạy thêm) cả năm bản word có lời giải chi tiết, trình bày đẹp mắt, dễ dàng chỉnh sửa:
- B1: gửi phí vào tk:
0711000255837
- NGUYEN THANH TUYEN - Ngân hàng Vietcombank (QR) - B2: Nhắn tin tới Zalo VietJack Official - nhấn vào đây để thông báo và nhận giáo án
Tài liệu tổng hợp trên 50 dạng bài tập Toán lớp 11 phần Hình học được các Giáo viên nhiều năm kinh nghiệm biên soạn với đầy đủ phương pháp giải, ví dụ minh họa và trên 1000 bài tập trắc nghiệm chọn lọc từ cơ bản đến nâng cao có lời giải sẽ giúp học sinh ôn luyện, biết cách làm các dạng toán lớp 11 Hình học từ đó đạt điểm cao trong các bài thi môn Toán lớp 11.
- Tính chất của phép tịnh tiến cực hay
- Cách tìm ảnh của 1 điểm qua phép tịnh tiến cực hay
- Cách tìm ảnh của 1 đường thẳng qua phép tịnh tiến cực hay
- Cách tìm ảnh của 1 đường tròn qua phép tịnh tiến cực hay
- Tính chất đối xứng trục cực hay
- Tìm ảnh của một điểm qua phép đối xứng trục cực hay
- Tìm ảnh của một đường thẳng qua phép đối xứng trục cực hay
- Tìm ảnh của một đường tròn qua phép đối xứng trục cực hay
- Tìm ảnh của một điểm qua phép đối xứng tâm cực hay
- Tìm ảnh của một đường thẳng qua phép đối xứng tâm cực hay
- Tìm ảnh của một đường tròn qua phép đối xứng tâm cực hay
- Cách tìm tâm đối xứng cực hay
- Dạng bài tập về phép quay 90 độ cực hay
- Dạng bài tập về phép quay 180 độ cực hay
- Cách tìm ảnh của điểm qua phép quay cực hay
- Cách tìm ảnh của đường thẳng qua phép quay cực hay
- Cách tìm ảnh của đường tròn qua phép quay cực hay
- Tìm ảnh của một điểm qua phép vị tự cực hay
- Tìm ảnh của một đường thẳng qua phép vị tự cực hay
- Tìm ảnh của một đường tròn qua phép vị tự cực hay
- Câu hỏi trắc nghiệm lý thuyết về đường thẳng và mặt phẳng
- Cách tìm giao tuyến của hai mặt phẳng
- Cách tìm giao điểm của đường thẳng và mặt phẳng
- Cách tìm thiết diện của hình chóp
- Cách chứng minh 3 điểm thẳng hàng, 3 đường thẳng đồng quy
- Cách tìm quỹ tích giao điểm của hai đường thẳng
- Câu hỏi trắc nghiệm lý thuyết về hai đường thẳng song song trong không gian
- Cách chứng minh hai đường thẳng song song trong không gian
- Cách chứng minh 4 điểm đồng phẳng, 3 đường thẳng đồng quy
- Cách tìm giao tuyến của 2 mặt phẳng chứa 2 đường thẳng song song
- Tìm thiết diện của hình chóp cắt bởi mặt phẳng chứa đường thẳng song song với đường thẳng khác
- Câu hỏi trắc nghiệm lý thuyết về đường thẳng song song với mặt phẳng
- Cách chứng minh đường thẳng song song với mặt phẳng
- Tìm giao tuyến của 2 mặt phẳng. Tìm thiết diện qua 1 điểm và song song với đường thẳng
- Câu hỏi trắc nghiệm lý thuyết hai mặt phẳng song song
- Cách chứng minh hai mặt phẳng song song
- Tìm giao tuyến của 2 mặt phẳng. Thiết diện qua 1 điểm song song với mặt phẳng
- 22 câu hỏi trắc nghiệm Phép chiếu song song chọn lọc có đáp án
- Các phép toán vectơ trong không gian
- Phân tích một vectơ theo các vectơ khác | Biểu diễn 1 vectơ theo 2, 3 vectơ không cùng phương
- Điều kiện để 2 vectơ cùng phương
- Điều kiện để 3 vectơ đồng phẳng
- Bài tập chứng minh đẳng thức vectơ
- Tìm tập hợp điểm thỏa mãn đẳng thức vectơ
- Câu hỏi trắc nghiệm lí thuyết hai đường thẳng vuông góc
- Xác định góc giữa hai vecto, góc giữa hai đường thẳng
- Tính tích vô hướng của hai vectơ
- Hai đường thẳng vuông góc trong không gian
- Câu hỏi trắc nghiệm lí thuyết đường thẳng vuông góc với mặt phẳng
- Chứng minh đường thẳng vuông góc với mặt phẳng
- Tính góc giữa đường thẳng và mặt phẳng
- Cách làm bài tập về tìm thiết diện
- Câu hỏi trắc nghiệm lí thuyết hai mặt phẳng vuông góc
- Tính góc giữa hai mặt phẳng trong không gian
- Chứng minh hai mặt phẳng vuông góc trong không gian
- Tính độ dài đoạn thẳng trong không gian
- Xác định thiết diện chứa một đường thẳng và vuông góc với một mặt phẳng
- Tính khoảng cách từ một điểm đến một đường thẳng
- Khoảng cách từ một điểm đến một mặt phẳng (sử dụng hình chiếu)
- Khoảng cách từ một điểm đến một mặt phẳng (dùng quan hệ song song)
- Khoảng cách giữa đường thẳng và mặt phẳng song song
- Khoảng cách giữa hai mặt phẳng song song
- Đoạn vuông góc chung của hai đường thẳng chéo nhau
- Đoạn vuông góc chung của hai đường thẳng chéo nhau trong không gian (dùng quan hệ song song)
Cách tìm ảnh của 1 điểm qua phép tịnh tiến
Biểu thức toạ độ:
Trong mặt phẳng tọa độ Oxy cho vectơ = (a;b). Với mỗi điểm M(x;y) ta có M'(x';y') là ảnh của M qua phép tịnh tiến theo . Khi đó:
Ví dụ 1: Trong mặt phẳng tọa độ Oxy, cho = (-2;3). Hãy tìm ảnh của các điểm A(1;-1), B(4;3) qua phép tịnh tiến theo vectơ .
Hướng dẫn giải:
Áp dụng biểu thức tọa độ của phép tịnh tiến
Gọi
Tương tự ta có ảnh của B là điểm B'(2;6).
Ví dụ 2: Cho điểm A(1;4). Tìm tọa độ của điểm B sao cho (tức là A là ảnh của B), biết:
Hướng dẫn giải:
Ví dụ 3: Tìm tọa độ của vectơ sao cho , biết:
a) M(-1; 0), M'(3; 8)
b) M(-5; 2), M'(4; -3)
c) M(-1; 2), M'(4; 5)
Hướng dẫn giải:
Ví dụ 4: Trong mặt phẳng tọa độ Oxy, cho . Hãy tìm ảnh của các điểm A(1;-1), B(4;3) qua phép tịnh tiến theo vectơ .
Hướng dẫn giải:
Câu 1. Trong mặt phẳng tọa độ Oxy cho điểm A(2;5). Phép tịnh tiến theo vectơ = (1;2) biến A thành điểm A' có tọa độ là:
A. A'(3;1).
B. A'(1;6).
C. A'(3;7).
D. A'(4;7).
Lời giải:
Gọi A'(x';y')
Chọn C.
Câu 2. Trong mặt phẳng tọa độ Oxy cho điểm A(2;5). Hỏi A là ảnh của điểm nào trong các điểm sau qua phép tịnh tiến theo vectơ = (1;2) ?
A. M(1;3).
B. N(1;6).
C. P(3;7).
D. Q(2;4).
Lời giải:
Giả sử M(x;y) là điểm có ảnh là điểm A qua phép tịnh tiến theo vectơ
Ta có
Chọn A.
Câu 3. Cho = (-1;5) và điểm M'(4;2). Biết M' là ảnh của M qua phép tịnh tiến . Tìm M.
A. M(-4;10).
B. M(-3;5).
C. M(3;7).
D. M(5;-3).
Lời giải:
Chọn D.
Câu 4. Trong mặt phẳng tọa độ Oxy cho hai điểm M(-10;1) và M'(3;8). Phép tịnh tiến theo vectơ biến điểm M thành M'. Mệnh đề nào sau đây là đúng?
A. = (-13;7).
B. = (13;-7).
C. = (13;7).
D. = (-13;-7).
Lời giải:
Gọi = (a;b).
Theo giả thiết:
Chọn C.
Câu 5. Trong mặt phẳng tọa độ Oxy nếu phép tịnh tiến biến điểm M(4;2) thành điểm M'(4;5) thì nó biến điểm A(2;5) thành
A. điểm A'(5;2).
B. điểm A'(1;6).
C. điểm A'(2;8).
D. điểm A'(2;5).
Lời giải:
Chọn C.
....................................
....................................
....................................
Cách tìm ảnh của 1 đường thẳng qua phép tịnh tiến
+) Sử dụng tính chất: d' là ảnh của d qua phép thì d' song song hoặc trùng với d
Nếu: d: Ax + By + C = 0; d'//d ⇒ d': Ax + By + C' = 0 (C' ≠ C)
+) Sử dụng biểu thức tọa độ
+) Chú ý:
Ví dụ 1: Trong mặt phẳng tọa độ Oxy, cho = (1;-3) và đường thẳng d có phương trình 2x - 3y + 5 = 0. Viết phương trình đường thẳng d' là ảnh của d qua phép tịnh tiến .
Hướng dẫn giải:
Cách 1. Sử dụng biểu thức tọa độ của phép tịnh tiến.
Lấy điểm M(x;y) tùy ý thuộc d, ta có 2x - 3y + 5 = 0 (*)
Cách 2. Sử dụng tính chất của phép tịnh tiến
Do d' = (d) nên d' song song hoặc trùng với d, vì vậy phương trình đường thẳng d' có dạng 2x - 3y + c = 0.(**)
Lấy điểm M(-1;1) ∈ d. Khi đó M' = (M) = (-1 + 1;1 - 3) = (0;-2).
Do M' ∈ d' ⇒ 2.0 - 3.(-2) + c = 0 ⇔ c = -6
Vậy ảnh của d là đường thẳng d': 2x - 3y - 6 = 0.
Cách 3. Để viết phương trình d' ta lấy hai điểm phân biệt M,N thuộc d, tìm tọa độ các ảnh M', N' tương ứng của chúng qua . Khi đó d' đi qua hai điểm M' và N'.
Cụ thể: Lấy M(-1;1), N(2;3) thuộc d, khi đó tọa độ các ảnh tương ứng là M'(0;-2), N'(3;0). Do d' đi qua hai điểm M', N' nên có phương trình
Ví dụ 2: Tìm PT đt d qua phép tịnh tiến theo : d biến thành d’, biết: d’: 2x + 3y – 1 = 0 với = (-2;-1)
Hướng dẫn giải:
* Cách 1: Gọi (d) = d'. Khi đó d // d’ nên PT đt d có dạng: 2x + 3y + C = 0
Chọn A’(2;-1) ∈ d’. Khi đó: (A) = A' ⇒ A(4; 0) ∈ d nên 8 + 0 + C = 0 ⇔ C = -8
Vậy: d: 2x + 3y – 8 = 0
* Cách 2: Chọn A’(2; -1) ∈ d’, (A) = A' ⇒ A(4; 0) ∈ d và chọn B’(-1;1) ∈ d’, (B) = B' ⇒ B(1;2) ∈ d
Đt d đi qua 2 điểm A, B nên PT đt d là:
⇔ 2x – 8 = -3y
⇔ 2x + 3y – 8 = 0
* Cách 3: Gọi M’(x’;y’) ∈ d’, (M) = M'
Ta có: M’ ∈ d’
⇔ 2x’ + 3y’ – 1 = 0
⇔ 2x – 4 + 3y – 3 – 1 = 0
⇔ 2x + 3y – 8 = 0
⇔ M ∈ d: 2x + 3y – 8 = 0
Ví dụ 3: Tìm tọa độ vectơ sao cho (d) = d' với d: 3x – y + 1 = 0 và d’: 3x – y – 7 = 0
Hướng dẫn giải:
d' là ảnh của d qua phép thì d' song song hoặc trùng với d
Nhận thấy d//d’ nên với mỗi điểm A ∈ d; B ∈ d' ta có:
Ví dụ 4: Phép tịnh tiến theo vectơ = (3;m). Tìm m để đt d: 4x + 6y – 1 = 0 biến thành chính nó qua phép tịnh tiến theo vectơ
Hướng dẫn giải:
Câu 1. Trong mặt phẳng tọa độ Oxy cho đường thẳng Δ có phương trình 4x - y + 3 = 0. Ảnh của đường thẳng Δ qua phép tịnh tiến T theo vectơ = (2;-1) có phương trình là:
A. 4x - y + 5 = 0.
B. 4x - y + 10 = 0.
C. 4x - y - 6 = 0.
D. x - 4y - 6 = 0.
Lời giải:
Cách 1. Gọi Δ' là ảnh của Δ qua phép . Khi đó Δ' song song hoặc trùng với Δ nên Δ' có phương trình dạng 4x - y + c = 0.
Chọn C.
Cách 2. Gọi M(x;y) là điểm bất kì thuộc đường thẳng Δ.
Thay x = x' - 2 và y = y' + 1 vào phương trình Δ ta được 4(x' - 2) - (y' + 1) + 3 = 0 ⇔ 4x' - y' - 6 = 0.
Câu 2. Trong mặt phẳng tọa độ Oxy nếu phép tịnh tiến biến điểm A(2;-1) thành điểm A'(1;2) thì nó biến đường thẳng d có phương trình 2x - y + 1 = 0 thành đường thẳng d' có phương trình nào sau đây?
A. d': 2x - y = 0.
B. d': 2x - y + 1 = 0.
C. d': 2x - y + 6 = 0.
D. d': 2x - y - 1 = 0.
Lời giải:
Gọi là vectơ thỏa mãn
Ta có (d) = d' → d' song song hoặc trùng với d. Suy ra d': 2x - y + c = 0.
Chọn C.
Câu 3. Trong mặt phẳng tọa độ Oxy nếu phép tịnh tiến biến điểm A(2;-1) thành điểm A'(2018;2015) thì nó biến đường thẳng nào sau đây thành chính nó?
A. x + y - 1 = 0.
B. x - y - 100 = 0.
C. 2x + y - 4 = 0.
D. 2x - y - 1 = 0.
Lời giải:
• Gọi là vectơ thỏa mãn
• Vì nên qua phép tịnh tiến đường thẳng biến thành chính nó khi nó có vectơ chỉ phương cùng phương với
• Xét B, đường thẳng: x - y - 100 = 0 có một vectơ pháp tuyến , suy ra vectơ chỉ phương cùng phương.
Chọn B.
Câu 4. Trong mặt phẳng tọa độ Oxy cho đường thẳng d có phương trình 2x - y + 1 = 0. Để phép tịnh tiến theo vectơ biến d thành chính nó thì phải là vectơ nào trong các vectơ sau?
A. = (2;1).
B. = (2;-1).
C. = (1;2).
D. = (-1;2).
Lời giải:
Để d biến thành chính nó khi và chỉ khi vectơ cùng phương với vectơ chỉ phương của d.
Đường thẳng d có VTPT
Chọn C.
Câu 5. Trong mặt phẳng tọa độ Oxy cho hai đường thẳng song song d và d' lần lượt có phương trình 2x - 3y - 1 = 0 và 2x - 3y + 5 = 0. Phép tịnh tiến nào sau đây không biến đường thẳng d thành đường thẳng d'?
A. = (0;2).
B. = (-3;0).
C. = (3;4).
D. = (-1;1).
Lời giải:
• Gọi = (a;b) là vectơ tịnh tiến biến đường d thành d'.
• Lấy M(x;y) ∈ d.
Thay (*) vào phương trình của d ta được 2(x' - a) - 3(y' - b) - 1 = 0 hay 2x' - 3y' - 2a + 3b - 1 = 0
suy ra phương trình d': 2x - 3y - 2a + 3b - 1 = 0
Mặt khác, theo giả thiết d': 2x - 3y + 5 = 0 ⇒ -2a + 3b - 1 = 5 (1)
Nhận thấy, = (-1;1) không thỏa mãn (1).
Chọn D.
....................................
....................................
....................................
Xem thử Chuyên đề dạy thêm Toán 11 KNTT Xem thử Bài tập Toán 11 KNTT (dạy thêm) Xem thử Chuyên đề dạy thêm Toán 11 CD Xem thửBài tập Toán 11 CD (dạy thêm)
- Giải Tiếng Anh 11 Global Success
- Giải sgk Tiếng Anh 11 Smart World
- Giải sgk Tiếng Anh 11 Friends Global
- Lớp 11 - Kết nối tri thức
- Soạn văn 11 (hay nhất) - KNTT
- Soạn văn 11 (ngắn nhất) - KNTT
- Giải sgk Toán 11 - KNTT
- Giải sgk Vật Lí 11 - KNTT
- Giải sgk Hóa học 11 - KNTT
- Giải sgk Sinh học 11 - KNTT
- Giải sgk Lịch Sử 11 - KNTT
- Giải sgk Địa Lí 11 - KNTT
- Giải sgk Giáo dục KTPL 11 - KNTT
- Giải sgk Tin học 11 - KNTT
- Giải sgk Công nghệ 11 - KNTT
- Giải sgk Hoạt động trải nghiệm 11 - KNTT
- Giải sgk Giáo dục quốc phòng 11 - KNTT
- Giải sgk Âm nhạc 11 - KNTT
- Lớp 11 - Chân trời sáng tạo
- Soạn văn 11 (hay nhất) - CTST
- Soạn văn 11 (ngắn nhất) - CTST
- Giải sgk Toán 11 - CTST
- Giải sgk Vật Lí 11 - CTST
- Giải sgk Hóa học 11 - CTST
- Giải sgk Sinh học 11 - CTST
- Giải sgk Lịch Sử 11 - CTST
- Giải sgk Địa Lí 11 - CTST
- Giải sgk Giáo dục KTPL 11 - CTST
- Giải sgk Hoạt động trải nghiệm 11 - CTST
- Giải sgk Âm nhạc 11 - CTST
- Lớp 11 - Cánh diều
- Soạn văn 11 Cánh diều (hay nhất)
- Soạn văn 11 Cánh diều (ngắn nhất)
- Giải sgk Toán 11 - Cánh diều
- Giải sgk Vật Lí 11 - Cánh diều
- Giải sgk Hóa học 11 - Cánh diều
- Giải sgk Sinh học 11 - Cánh diều
- Giải sgk Lịch Sử 11 - Cánh diều
- Giải sgk Địa Lí 11 - Cánh diều
- Giải sgk Giáo dục KTPL 11 - Cánh diều
- Giải sgk Tin học 11 - Cánh diều
- Giải sgk Công nghệ 11 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 11 - Cánh diều
- Giải sgk Giáo dục quốc phòng 11 - Cánh diều
- Giải sgk Âm nhạc 11 - Cánh diều