Bài 85 trang 90 SBT Toán 8 Tập 1



Bài 7: Hình bình hành

Bài 85 trang 90 SBT Toán 8 Tập 1: Cho hình hình hành ABCD. Qua C kẻ đường thẳng xy chỉ có một điểm chung C với hình bình hành. Gọi AA', BB', DD' là các đường vuông góc kẻ từ A, B, D đến đường thẳng xy. Chứng minh rằng AA' = BB' + DD'

Lời giải:

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Gọi O là giao điểm của hai đường chéo AC và BD.

Kẻ OO' ⊥ xy

Ta có: BB' ⊥ xy (giả thiết)

DD' ⊥ xy (giả thiết)

Suy ra: BB // OO' // DD'

Tứ giác BB'D'D là hình thang .

OB = OD (tính chất hình bình hành)

Nên O'B' = O'D'

Do đó OO' là đường trung bình của hình thang BB'D'D

OO'= BB'+DD' 2 (tính chất đường trung hình hình thang) (1)

Ta có: AA' ⊥ xy (giả thiết)

Và OO' ⊥ xy (theo cách vẽ)

Suy ra: AA' // OO'.

Trong ΔACA' tacó: OA = OC (tính chất hình bình hành)

OO' // AA' nên OO' là đường trung bình của ΔACA'

⇒OO' = 1 2 AA' (tính chất đường trung bình của tam giác)

⇒AA' = 2OO' (2).

Từ (1) và (2) suy ra: AA' = BB' + DD'  (điều phải chứng minh).

Các bài giải bài tập sách bài tập Toán 8 (SBT Toán 8) khác:

Xem thêm các loạt bài Để học tốt Toán lớp 8 hay khác:


bai-7-hinh-binh-hanh.jsp


Giải bài tập lớp 8 sách mới các môn học