Bài 83 trang 90 SBT Toán 8 Tập 1



Bài 7: Hình bình hành

Bài 83 trang 90 SBT Toán 8 Tập 1: Cho hình hình hành ABCD. Gọi E, F theo thứ tự là trung điểm của AB, CD. Gọi M là giao điểm của AF và DE, N là giao điểm của BF và CE. Chứng minh rằng:

a. EMNF là hình bình hành

b. Các đường thẳng AC, EF, MN đồng quy.

Lời giải:

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

a)

+) Ta có:

AE = 1 2 AB; CF = 1 2 CD (vì E và F lần lượt là trung điểm của AB, CD).

Và AB = CD (tính chất hình bình hành)

Do đó, AE = CF.

+) Lại có: AB // CD ( vì ABCD là hình bình hành) nên AE //CF

Tứ giác AECF có hai cạnh đối AE, CF song song và bằng nhau nên là hình bình hành

⇒ AF //CE hay EN // FM (1).

Xét tứ giác BFDE ta có:

AB // CD (Vì ABCD là hình bình hành) hay BE // DF

Vì E và F lần lượt là trung điểm của AB, CD nên BE= 1 2 AB;DF= 1 2 CD .

Lại có: AB = CD (tính chất hình bình hành)

Suy ra: BE = DF.

Tứ giác BFDE là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau) ⇒ BF//DE hay EM // FN (2)

Từ (1) và (2) suy ra tứ giác EMFN là hình bình hành (theo định nghĩa hình bình hành).

b) Gọi O là giao điểm của AC và EF.

Tứ giác AECF là hình bình hành ⇒ OE = OF (tính chất hình bình hành).

Tứ giác EMFN là hình bình hành nên hai đường chéo cắt nhau tại trung điểm của mỗi đường.

Suy ra: MN đi qua trung điểm O của EF.

Vậy AC, EF, MN đồng quy tại O.

Các bài giải bài tập sách bài tập Toán 8 (SBT Toán 8) khác:

Xem thêm các loạt bài Để học tốt Toán lớp 8 hay khác:


bai-7-hinh-binh-hanh.jsp


Giải bài tập lớp 8 sách mới các môn học