Giải Toán 8 trang 90 (Tập 1, Tập 2 sách mới)



Lời giải sgk Toán 8 trang 90 Tập 1, Tập 2 sách mới:




Lưu trữ: Giải SBT Toán 8 trang 90 Bài 84 (sách cũ)

Bài 84 trang 90 SBT Toán 8 Tập 1: Trên hình 11, cho ABCD là hình bình hành. Chứng minh rằng:

a. EGFH là hình bình hành.

b. Các đường thẳng AC, BD, EF, GH đồng quy.

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Lời giải:

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

a)

+) Ta có: AH + HD = AD

Và CG + GB = CB

Mà AD = CB (vì ABCD là hình bình hành).

 Và DH = GB (giả thiết)

Suy ra: AH = CG.

Xét ΔAEH và ΔCFG:

AE = CF (giả thiết)

A ^ = C ^ (tính chất hình bình hành)

AH = CG ( chứng minh trên).

Do đó: ΔAEH = ΔCFG (c.g.c) 

⇒ EH = FG (hai cạnh tương ứng)

Xét ΔBEG và ΔDFH, ta có:

BG = DH (giả thiết)

B ^ = D ^ (tính chất hình bình hành)

BE = DF (vì AB = CD và AE = CF nên AB – AE = CD – CF hay BE = DF )

Do đó: ΔBEG = ΔDFH (c.g.c) 

⇒ EG = FH (hai cạnh tương ứng) 

Xét tứ giác EGFH có:
 EG = HF (chứng minh trên)

EH = FG (chứng minh trên)

Suy ra: Tứ giác EGFH là hình bình hành (vì có các cặp cạnh đối bằng nhau).

b) Gọi O là giao điểm của AC và EF.

Xét tứ giác AECF, ta có: AB // CD ( Vì ABCD là hình bình hành) hay AE // CF

Lại có: AE = CF (giả thiết)

Do đó: Tứ giác AECF là hình bình hành (vì có 1 cặp cạnh đối song song và bằng nhau).

⇒ O là trung điểm của AC và EF.

Tứ giác ABCD là hình bình hành có O là trung điểm AC nên O cũng là trung điểm của BD.

Tứ giác EGFH là hình bình hành có O là trung điểm EF nên O cũng là trung điểm của GH.

Vậy AC, BD, EF, GH đồng quy tại O.

Các bài giải bài tập sách bài tập Toán 8 (SBT Toán 8) khác:

Xem thêm các loạt bài Để học tốt Toán lớp 8 hay khác:


bai-7-hinh-binh-hanh.jsp


Giải bài tập lớp 8 sách mới các môn học