Top 100 Đề thi Toán 11 Chân trời sáng tạo (có đáp án)
Tuyển chọn 100 Đề thi Toán 11 Chân trời sáng tạo Học kì 1, Học kì 2 năm 2024 mới nhất có đáp án và lời giải chi tiết, cực sát đề thi chính thức gồm đề thi giữa kì, đề thi học kì giúp học sinh 11 ôn luyện và đạt điểm cao trong các bài thi Toán 11.
Xem thử Đề thi GK1 Toán 11 Xem thử Đề thi CK1 Toán 11 Xem thử Đề thi GK2 Toán 11 Xem thử Đề thi CK2 Toán 11
Chỉ từ 150k mua trọn bộ đề thi Toán 11 Chân trời sáng tạo bản word có lời giải chi tiết, dễ dàng chỉnh sửa:
- B1: gửi phí vào tk:
0711000255837
- NGUYEN THANH TUYEN - Ngân hàng Vietcombank (QR) - B2: Nhắn tin tới Zalo VietJack Official - nhấn vào đây để thông báo và nhận giáo án
Đề thi Toán 11 Giữa kì 1 Chân trời sáng tạo
Đề thi Toán 11 Học kì 1 Chân trời sáng tạo
Đề thi Toán 11 Giữa kì 2 Chân trời sáng tạo
Đề thi Toán 11 Học kì 2 Chân trời sáng tạo
Đề thi Toán 11 cấu trúc mới Chân trời sáng tạo
Đề cương Toán 11 Chân trời sáng tạo
Xem thêm Đề thi Toán 11 cả ba sách:
Sở Giáo dục và Đào tạo ...
Đề thi Giữa kì 1 - Chân trời sáng tạo
Năm học 2024 - 2025
Môn: Toán lớp 11
Thời gian làm bài: phút
PHẦN I. TRẮC NGHIỆM KHÁCH QUAN (7,0 điểm)
Hãy khoanh tròn vào phương án đúng duy nhất trong mỗi câu dưới đây.
Câu 1. Đổi số đo của góc sang rađian.
A.
B.
C.
D.
Câu 2. Trong mặt phẳng tọa độ cho đường tròn lượng giác như hình vẽ bên dưới. Hỏi góc lượng giác nào sau đây có số đo là
A.
B.
C.
D.
Câu 3. Trong mặt phẳng tọa độ trên đường tròn lượng giác gọi điểm M là điểm biểu diễn của góc Lấy điểm N đối xứng với M qua gốc tọa độ. Hỏi N là điểm biểu diễn của góc có số đo bằng bao nhiêu?
A.
B.
C.
D.
Câu 4. Cho thuộc góc phần phần tư thứ nhất của đường tròn lượng giác. Khẳng định nào sau đây là đúng?
A.
B. .
C. .
D. .
Câu 5. Mệnh đề nào sau đây là sai?
A. .
B. .
C. .
D. .
Câu 6.Cho góc thỏa mãn và . Tính .
A. .
B. .
C. .
D.
Câu 7.Khẳng định nào sau đây đúng?
A. .
B. .
C. .
D.
Câu 8.Cho các đẳng thức sau:
1) .
2) .
3) .
4) .
Có bao nhiêu đẳng thức dưới đây là đồng nhất thức?
A. 1.
B. 2.
C. 3.
D. 4.
Câu 9. Cho góc thỏa mãn . Tính .
A. .
B. .
C. .
D. .
Câu 10. Tìm tập xác định D của hàm số
A.
B.
C.
D.
Câu 11. Đường cong trong hình dưới đây là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D.
Hỏi hàm số đó là hàm số nào?
A.
B.
C.
D.
Câu 12. Hàm số có tất cả bao nhiêu giá trị nguyên?
A. 3.
B. 4.
C. 5.
D. 6.
Câu 13. Trong các phương trình sau, phương trình tương đương với phương trình là
A. .
B. .
C. .
D. .
Câu 14. Tất cả nghiệm của phương trình là
A. .
B. .
C. .
D. .
Câu 15. Tất cả nghiệm của phương trình là
A. .
B. .
C. .
D.
Câu 16. Nghiệm âm lớn nhất của phương trình lượng giác là
A. .
B.
C. .
D. .
Câu 17. Cho dãy số là dãy số tự nhiên lẻ theo thứ tự tăng dần và . Năm số hạng đầu của dãy số là:
A. .
B. .
C. .
D.
Câu 18. Trong các dãy số sau, dãy số nào không là dãy số bị chặn?
A. với .
B. với
C.
D. với .
Câu 19. Cho dãy số với , a là số thực. Tìm một giá trị của a để là dãy số giảm.
A. .
B. 1.
C. 0.
D. .
Câu 20. Trong các dãy số được cho dưới đây, dãy số nào không phải là cấp số cộng?
A..
B..
C..
D..
Câu 21. Trong các dãy số được cho dưới đây, dãy số nào không phải là cấp số cộng?
A. .
B. .
C. .
D. .
Câu 22. Cho hai số -3 và 23. Xen kẽ giữa hai số đã cho n số hạng để tất cả các số đó tạo thành cấp số cộng có công sai d=2. Tìm n.
A. n=12
B. n=13.
C. n=14.
D. n=15.
Câu 23. Tìm n số hạng đầu tiên của một cấp số cộng với . Tìm số hạng tổng quát của cấp số cộng đã cho.
A..
B..
C..
D.
Câu 24. Dãy số nào sau đây không phải là cấp số nhân?
A.
B.
C. .
D.
Câu 25. Dãy số là cấp số nhânvới
A. Công bội là 3 và số hạng đầu tiên là 1.
B.Công bội là 2 và số hạng đầu tiên là 1.
C.Công bội là 4 và số hạng đầu tiên là 2.
D.Công bội là 2 và số hạng đầu tiên là 2.
Câu 26. Tìm tất cả giá trị của để ba số theo thứ tự đó lập thành một cấp số nhân.
A..
B..
C..
D.
Câu 27. Cho cấp số nhân có tổng n số hạng đầu tiên là . Tìm số hạng thứ 5 của cấp số nhân đã cho.
A. .
B..
C.
D..
Câu 28. Trong các khẳng định sau, khẳng định nào đúng?
A. Qua 2 điểm phân biệt có duy nhất một mặt phẳng.
B.Qua 3 điểm phân biệt bất kì có duy nhất một mặt phẳng.
C.Qua 3 điểm không thẳng hàng có duy nhất một mặt phẳng.
D.Qua 4 điểm phân biệt bất kì có duy nhất một mặt phẳng.
Câu 29. Các yếu tố nào sau đây xác định một mặt phẳng duy nhất?
A. Ba điểm phân biệt.
B.Một điểm và một đường thẳng.
C.Hai đường thẳng cắt nhau.
D.Bốn điểm phân biệt.
Câu 30. Cho mặt phẳng , cho 4 điểm trong đó không có ba điểm nào thẳng hàng. Điểm S không thuộc mặt phẳng . Có mấy mặt phẳng tạo bởi S và 2 trong 4 điểm nói trên?
A.4.
B.8.
C.5.
D.6.
Câu 31. Cho bốn điểm không đồng phẳng. Gọi lần lượt là trung điểm của và . Trên đoạn lấy điểm P sao cho . Giao điểm của đường thẳng và mặt phẳng là giao điểm của
A. CD và NP.
B. CD và MN.
C. CD và MP.
D.CD và AP.
Câu 32. Trong các mệnh đề sau, mệnh đề nào đúng?
A. Hai đường thẳng có một điểm chung thì chúng có vô số điểm chung khác.
B.Hai đường thẳng song song khi và chỉ khi chúng không có điểm chung.
C.Hai đường thẳng song song khi và chỉ khi chúng không đồng phẳng.
D.Hai đường thẳng chéo nhau khi và chỉ khi chúng không đồng phẳng.
Câu 33. Trong không gian, cho ba đường thẳng phân biệt trong đó . Khẳng định nào sau đây sai?
A. Nếu thì .
B.Nếu c cắt a thì c cắt b.
C.Nếu và thì ba đường thẳng cùng ở trên một mặt phẳng.
D.Tồn tại duy nhất một mặt phẳng qua a và b.
Câu 34. Cho hình chóp có là hình bình hành. Gọi d là giao tuyến của hai mặt phẳng và . Khẳng định nào sau đây đúng?
A. d qua S và song song với BC.
B. d qua S và song song với DC.
C. d qua S và song song với AB.
D. d qua S và song song với BD.
Câu 35. Gọi G là trọng tâm tứ diện . Gọi là trọng tâm của tam giác . Tính tỉ số
A.2.
B.3.
C.
D.
II. Tự luận (3,0 điểm)
Bài 1. (1,0 điểm) Số giờ có ánh sáng mặt trời của một thành phố A trong ngày thứ t của năm 2017 được cho bởi một hàm số với và . Vào ngày nào trong năm thì thành phố A có nhiều giờ có ánh sáng mặt trời nhất?
Bài 2. (1,0 điểm) Một du khách vào chuồng đua ngựa đặt cược, lần đầu đặt 20000 đồng, mỗi lần sau đặt gấp đôi lần cọc trước. Người đó thua 9 lần liên tiếp và thắng ở lần thứ 10. Hỏi du khách trên thắng hay thua bao nhiêu?
Bài 3. (1,0 điểm) Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình bình hành và N là trung điểm của cạnh SA.
a) Tìm giao điểm của AC và mặt phẳng (SBD)
b) Tìm thiết diện của hình chóp khi cắt bởi mặt phẳng (NBC). Thiết diện là hình gì?
-------------- HẾT --------------
Sở Giáo dục và Đào tạo ...
Đề thi Học kì 1 - Chân trời sáng tạo
Năm học 2024 - 2025
Môn: Toán lớp 11
Thời gian làm bài: phút
I. Trắc nghiệm (7 điểm)
Câu 1. Cho góc hình học uOv có số đo 50°. Xác định số đo của góc lượng giác (Ou, Ov) trong hình dưới đây?
A. 50°.
B. 330°.
C. -50°.
D. 130°.
Câu 2. Cho góc thỏa mãn . Giá trị của là
A. .
B. .
C. .
D. .
Câu 3. Trong các hàm số sau, hàm số nào là hàm số chẵn?
A. y = sin 2x.
B. y = cos x.
C. y = tan 3x.
D. y = 2 cot x.
Câu 4. Tập xác định D của hàm số y = 2 tan x là
A. .
B. .
C. .
D. .
Câu 5. Nghiệm của phương trình cos 2x = 1 là
A. .
B. .
C. .
D. .
Câu 6. Có bao nhiêu giá trị nguyên của m để phương trình có nghiệm?
A. 3.
B. 2.
C. 1.
D. 0.
Câu 7. Trong các dãy số sau dãy số nào là dãy số tăng?
A. .
B. .
C. .
D. .
Câu 8. Dãy số có số hạng tổng quát là công thức nào dưới đây?
A. .
B. .
C. .
D. .
Câu 9. Cho dãy số , biết . Tìm số hạng .
A. .
B. .
C. .
D. .
Câu 10. Trong các dãy số sau, dãy số nào là một cấp số cộng?
A. .
B. .
C. .
D. .
Câu 11. Cho cấp số cộng có . Khi đó công sai là
A. 6.
B. 12.
C. 3.
D. -6.
Câu 12. Cho cấp số cộng có . Mệnh đề nào sau đây đúng?
A. .
B. .
C. .
D. .
Câu 13. Trong các dãy số sau, dãy số nào không phải là một cấp số nhân?
A. .
B. .
C. .
D. .
Câu 14. Cho dãy số biết . Tìm số hạng tổng quát của dãy số
A. .
B. .
C. .
D. .
Câu 15. Cho hai dãy và thỏa mãn và . Giá trị của bằng
A. -1.
B. 1.
C. .
D. .
Câu 16. Tính .
A. 1.
B. .
C. .
D. 0.
Câu 17. Tính .
A. 1.
B. .
C. .
D. 0.
Câu 18. Cho hàm số thỏa mãn . Giá trị bằng
A. 6.
B. 2.
C. 5.
D. .
Câu 19. bằng
A. 1.
B. .
C. .
D. 0.
Câu 20. Hàm số nào sau đây liên tục trên ℝ?
A. .
B. .
C. .
D. .
Câu 21. Hàm số có đồ thị như hình dưới đây:
Hàm số gián đoạn tại điểm
A. x = 1.
B. x = 3.
C. x = 0.
D. x = 2.
Câu 22. Trong các khẳng định sau, khẳng định nào đúng?
A. Qua 4 điểm phân biệt bất kì có duy nhất một mặt phẳng.
B. Qua 3 điểm phân biệt bất kì có duy nhất một mặt phẳng.
C. Qua 3 điểm không thẳng hàng có duy nhất một mặt phẳng.
D. Qua 2 điểm bất kì có duy nhất một mặt phẳng.
Câu 23. Cho hình chóp tứ giác S.ABCD có đáy là hình bình hành tâm O. Điểm M thuộc cạnh SO (M khác S, O). Trong các mặt phẳng sau, điểm M thuộc mặt phẳng nào?
A. (ABCD).
B. (SBD).
C. (SAB).
D. (SCD).
Câu 24. Cho tứ diện ABCD, vị trí tương đối của hai đường thẳng AC và BD là
A. Cắt nhau.
B. Song song.
C. Chéo nhau.
D. Trùng nhau.
Câu 25. Cho tứ diện ABCD. Gọi M, N lần lượt là các điểm thuộc các cạnh AB, AC sao cho ; I, J lần lượt là trung điểm của BD và CD.
Khẳng định nào sau đây đúng?
A. IJ cắt BC.
B. IJ song song MN.
C. IJ và MN là hai đường thẳng chéo nhau.
D. IJ và MN là hai đường thẳng song song hoặc chéo nhau.
Câu 26. Cho đường thẳng a và mặt phẳng (P) không có điểm chung. Kết luận nào sau đây đúng?
A. a cắt (P).
B. a cắt (P) hoặc a chéo (P).
C. .
D. a chứa trong (P).
Câu 27. Cho hình chóp tứ giác S.ABCD. Gọi M, N lần lượt là trung điểm của SA, SC. Đường thẳng MN song song với mặt phẳng nào dưới đây?
A. (ABCD).
B. (SAC).
C. (SAD).
D. (SBD).
Câu 28. Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M, N, P lần lượt là trung điểm của SA, SD, AB. Khẳng định nào sau đây đúng?
A. .
B. .
C. .
D. .
Câu 29. Cho hình hộp . Mặt phẳng (BC'D) song song với mặt phẳng nào trong các mặt phẳng sau đây?
A. .
B. .
C. .
D. .
Câu 30. Cho các đường thẳng không song song với phương chiếu. Khẳng định nào sau đây là đúng?
A. Phép chiếu song song biến hai đường thẳng song song thành hai đường thẳng song song.
B. Phép chiếu song song có thể biến hai đường thẳng song song thành hai đường thẳng cắt nhau.
C. Phép chiếu song song có thể biến hai đường thẳng song song thành hai đường thẳng chéo nhau.
D. Phép chiếu song song biến hai đường thẳng song song thành hai đường thẳng song song hoặc trùng nhau.
Câu 31. Cho hình lăng trụ tam giác
Hình chiếu của tam giác ACB trên mặt phẳng theo phương CC' là
A. Tam giác
B. Đoạn thẳng
C. Tam giác
D. Đoạn thẳng
Câu 32. Bảng xếp loại học lực của học sinh lớp 11A của trường năm học 2023-2024, được cho như sau:
Số học sinh của lớp 11A trên là bao nhiêu?
A. 45.
B. 5.
C. 15.
D. 35.
Câu 33. Điều tra về chiều cao của học sinh khối lớp 10 của trường thu được mẫu số liệu ghép nhóm sau:
Nhóm chứa mốt của mẫu số liệu trên là:
A. [150; 152).
B. [160; 162).
C. [154; 156).
D. 38.
Câu 34. Người ta ghi lại tuổi thọ (năm) của bình ắc quy của một hãng xe ô tô cho kết quả như sau:
Trung vị của mẫu số liệu trên thuộc nhóm nào trong các nhóm dưới đây?
A. [2, 5; 3).
B. [3; 3, 5).
C. [3, 5; 4).
D. [4; 4, 5).
Câu 35. Người ta ghi lại tuổi thọ (năm) của 50 bình ắc quy của một hãng xe ô tô của cho kết quả như sau:
Tứ phân vị thứ nhất của mẫu số liệu trên gần với giá trị nào trong các giá trị sau đây?
A. 2,92.
B. 2,97.
C. 2,75.
D. 2,95.
II. Tự luận (3 điểm)
Bài 1. (1 điểm) Tính các giới hạn sau:
a) ;
b) .
Bài 2. (1 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi G, N lần lượt là trọng tâm của tam giác SAB, ABC.
a) Tìm giao tuyến của hai mặt phẳng (SAC) và (SBD).
b) Chứng minh rằng song song với mặt phẳng (SAC).
Bài 3. (0,5 điểm) Một thợ thủ công muốn vẽ trang trí một hình vuông kích thước bằng cách vẽ một hình vuông mới với các đỉnh là trung điểm các cạnh của hình vuông ban đầu và tô kín màu lên hai tam giác đối diện (như hình vẽ dưới đây). Quá trình vẽ và tô theo quy luật đó được lặp lại 10 lần. Tính số tiền nước sơn để người thợ đó hoàn thành trang trí hình vuông trên? Biết tiền nước sơn 1 m2 là 80 000 đồng.
Bài 4. (0,5 điểm) Trong hình sau, khi được kéo ra khỏi vị trí cân bằng ở điểm O và buông tay, lực đàn hồi của lò xo khiến vật A gắn ở đầu của lò xo dao động quanh O. Toạ độ s (cm) của A trên trục Ox vào thời điểm t (giây) sau khi buông tay được xác định bởi công thức . Vào các thời điểm nào thì ?
(Theo https://www.britannica.com/science/simple-harmonic-motion)
-----HẾT-----
Sở Giáo dục và Đào tạo ...
Đề thi Giữa kì 2 - Chân trời sáng tạo
Năm học 2024 - 2025
Môn: Toán lớp 11
Thời gian làm bài: phút
I. Trắc nghiệm (7 điểm)
Câu 1. Cho a là số thực dương. Với n thuộc tập hợp nào thì khẳng định đúng?
A. n ∈ ℝ.
B. n ∈ ℤ.
C. n ∈ ℕ.
D. n ∈ ℕ*.
Câu 2. Với a là số thực dương tùy ý, bằng kết quả nào sau đây?
A. a6.
B. .
C. .
D. .
Câu 3. Với α là số thực bất kì, mệnh đề nào sau đây sai?
A. .
B. .
C. .
D. .
Câu 4. Cho đẳng thức . Khi đó α thuộc khoảng nào sau đây?
A. (-2; -1).
B. (-1; 0).
C. (-3; -2).
D. (0; 1).
Câu 5. Chị Hà gửi vào ngân hàng 20 000 000 đồng với lãi suất 0,5%/tháng (sau mỗi tháng tiền lãi được nhập vào tiền gốc để tính lãi tháng sau). Hỏi sau 1 năm chị Hà nhận được bao nhiêu tiền, biết trong 1 năm đó chị Hà không rút tiền lần nào và lãi suất không thay đổi (làm tròn đến hàng nghìn).
A. 21 233 000 đồng.
B. 21 235 000 đồng.
C. 21 234 000 đồng.
D. 21 200 000 đồng.
Câu 6. Với điều kiện nào của a, b thì khẳng định là đúng?
A. a, b > 0, a ≠ 1.
B. a, b > 0.
C. a > 0, a ≠ 1.
D. b > 0, a ≠ 1.
Câu 7. Trong các mệnh đề sau, mệnh đề nào đúng?
A. với mọi số thực dương a, b và a ≠ 1.
B. với mọi số thực dương a, b.
C. với mọi số thực a, b.
D. với mọi số thực a, b và a ≠ 1.
Câu 8. Với a là số thực dương tùy ý, bằng
A. .
B. .
C. .
D. .
Câu 9. Cho 0 < a ≠ 1. Giá trị của biểu thức là
A. .
B. 3.
C. .
D. .
Câu 10. Cho a, b, c là các số thực dương thỏa mãn a2 = bc. Giá trị của biểu thức là
A. .
B. S = 1.
C. .
D. S = 0.
Câu 11. Hàm số nào dưới đây là hàm số mũ?
A. .
B. .
C. .
D. .
Câu 12. Cho các hàm số sau:
, , , , .
Có bao nhiêu hàm số lôgarit trong các hàm số trên?
A. 5.
B. 4.
C. 3.
D. 2.
Câu 13. Tập xác định của hàm số là
A. .
B. .
C. .
D. .
Câu 14. Cho ba số thực dương a, b, c khác 1. Đồ thị các hàm số được cho trong hình vẽ sau.
Mệnh đề nào dưới đây đúng?
A. b < c < a.
B. c < a < b.
C. a < b < c.
D. a < c < b.
Câu 15. Đường cong trong hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào? A. . B. . C. . D. . |
Câu 16. Nghiệm của phương trình 7x = 2 là
A. .
B. .
C. .
D. .
Câu 17. Nghiệm của phương trình là
A. .
B. x = 9.
C. .
D. x = 8.
Câu 18. Tập nghiệm của bất phương trình là
A. .
B. .
C. .
D. .
Câu 19. Tập nghiệm của bất phương trình là
A. .
B. .
C. .
D. .
Câu 20. Biết phương trình có hai nghiệm phân biệt x1, x2. Tính giá trị của biểu thức A = x1 + x2.
A. A = 4.
B. A = .
C. A = 9.
D. A = 16.
Câu 21. Trong không gian cho hai đường thẳng thẳng m và n. Phát biểu nào sau đây là đúng?
A. Góc giữa hai đường thẳng m và n là góc giữa hai đường thẳng a và b cùng đi qua một điểm và tương ứng song song với m và n.
B. Góc giữa hai đường thẳng m và n là góc giữa hai đường thẳng m và b vuông góc với n.
C. Góc giữa hai đường thẳng m và n là góc giữa hai đường thẳng a và b tương ứng vuông góc với m và n.
D. Góc giữa hai đường thẳng m và n là góc giữa hai đường thẳng a và b bất kỳ.
Câu 22. Trong không gian, cho hai đường thẳng a và b. Khẳng định nào sau đây là đúng?
A. Đường thẳng a và b vuông góc với nhau khi và chỉ khi chúng cắt nhau.
B. Đường thẳng a và b vuông góc với nhau khi và chỉ khi góc giữa chúng bằng 90°.
C. Đường thẳng a và b vuông góc với nhau khi và chỉ khi góc giữa chúng bằng 45°.
D. Đường thẳng a và b vuông góc với nhau khi và chỉ khi góc giữa chúng bằng 0°.
Câu 23. Cho hình lập phương ABCD.A'B'C'D' (như hình vẽ dưới).
Góc giữa hai đường thẳng AB và A'C' bằng
A. 60°.
B. 45°.
C. 90°.
D. 30°.
Câu 24. Cho hình lập phương ABCD.A'B'C'D' (như hình vẽ dưới).
Đường thẳng nào sau đây vuông góc với đường thẳng BC'?
A. A'D.
B. AC.
C. BB'.
D. AD'.
Câu 25. Trong không gian cho đường thẳng d vuông góc với mọi đường thẳng a nằm trong mặt phẳng (α). Khẳng định nào sau đây đúng?
A. d // (α).
B. d ⊥ (α).
C. d ⊂ (α).
D. d cắt α.
Câu 26. Cho tứ diện ABCD có AB, AC, AD đôi một vuông góc với nhau (tham khảo hình vẽ).
Khẳng định nào sau đây là đúng?
A. AB ⊥ (BCD).
B. AC ⊥ (BCD).
C. AD ⊥ (BCD).
D. AD ⊥ (ABC).
Câu 27. Cho hai đường thẳng a, b và mp(P). Chỉ ra mệnh đề đúng trong các mệnh đề sau:
A. Nếu a // (P) và b ⊥ a thì b // (P).
B. Nếu a // (P) và b ⊥ (P) thì a ⊥ b.
C. Nếu a // (P) và b ⊥ a thì b ⊥ (P).
D. Nếu a ⊥ (P) và b ⊥ a thì b // (P).
Câu 28. Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, SA ⊥ (ABCD). Gọi M, N lần lượt là trung điểm của AB và SB (tham khảo hình vẽ).
Khẳng định nào sau đây là đúng?
A. AC ⊥ (SAD).
B. MN ⊥ (SBD).
C. BD ⊥ (SCD).
D. MN ⊥ (ABCD).
Câu 29. Cho hình chóp S.ABCD có đáy là hình vuông, SA vuông góc với mặt phẳng (ABCD). Gọi H là hình chiếu vuông góc của A lên mặt phẳng (SBC).
Khẳng định nào sau đây là khẳng định đúng?
A. H là chân đường vuông góc hạ từ A lên SB.
B. H là trọng tâm tam giác SBC.
C. H trùng với B.
D. H là trung điểm của SB.
Câu 30. Cho hai mặt phẳng (α), (β). Phát biểu nào sau đây đúng?
A. Nếu (α) cắt (β) thì (α) ⊥ (β).
B. Nếu ((α), (β)) = 0° thì (α) ⊥ (β).
C. Nếu ((α), (β)) = 45° thì (α) ⊥ (β).
D. Nếu ((α), (β)) = 90° thì (α) ⊥ (β).
Câu 31. Số cạnh bên của hình chóp cụt tứ giác đều là
A. 3.
B. 4.
C. 6.
D. 12.
Câu 32. Cho đường thẳng a vuông góc với mặt phẳng (α) và a ⊂ (β). Khẳng định nào sau đây là đúng?
A. (α) // (β).
B. (α) trùng (β).
C. .
D. (α) ⊥ (β).
Câu 33. Trong các mệnh đề sau, mệnh đề nào đúng?
A. Nếu hình hộp có hai mặt là hình chữ nhật thì nó là hình hộp chữ nhật.
B. Nếu hình hộp có năm mặt là hình chữ nhật thì nó là hình hộp chữ nhật.
C. Nếu hình hộp có bốn mặt là hình chữ nhật thì nó là hình hộp chữ nhật.
D. Nếu hình hộp có ba mặt là hình chữ nhật thì nó là hình hộp chữ nhật.
Câu 34. Cho hình chóp S.ABC có đáy là tam giác vuông tại B, SA vuông góc với đáy (tham khảo hình vẽ).
Khẳng định nào sau đây sai?
A. (SAB) ⊥ (ABC).
B. (SAB) ⊥ (SAC).
C. (SAC) ⊥ (ABC).
D. (SAB) ⊥ (SBC).
Câu 35. Cho tam giác ABC cân tại A có đường cao , BC chứa trong mặt phẳng (P). Gọi A' là hình chiếu vuông góc của A lên mặt phẳng (P) (như hình vẽ bên). Biết tam giác A'BC vuông tại A'. Gọi là góc giữa (P) và (ABC).
Chọn khẳng định đúng trong các khẳng định sau.
A. .
B. .
C. .
D. .
II. Tự luận (3 điểm)
Bài 1. (1,0 điểm)
a) Tính giá trị của biểu thức .
b) Tìm tất cả các giá trị thực của tham số m để hàm số có tập xác định là ℝ.
Bài 2. (1,0 điểm) Cho tứ diện ABCD có tam giác ABC cân tại A, tam giác BCD cân tại D. Gọi I là trung điểm cạnh BC.
a) Chứng minh rằng BC ⊥ (AID).
b) Gọi AH là đường cao của tam giác AID. Chứng minh rằng AH ⊥ BD.
Bài 3. (1,0 điểm) Sự tăng trưởng của một loài vi khuẩn được tính theo công thức , trong đó A là số lượng vi khuẩn ban đầu, r là tỷ lệ tăng trưởng ( r > 0), t (tính theo giờ) là thời gian tăng trưởng. Biết số vi khuẩn ban đầu có 1 000 con và sau 10 giờ là 5 000 con. Hỏi sao bao lâu thì số lượng vi khuẩn tăng gấp 10 lần?
----------HẾT----------
Sở Giáo dục và Đào tạo ...
Đề thi Học kì 2 - Chân trời sáng tạo
Năm học 2024 - 2025
Môn: Toán lớp 11
Thời gian làm bài: phút
I. Trắc nghiệm (7 điểm)
Câu 1. Biểu thức nào là luỹ thừa với số mũ thực
A. .
B. 2-x.
C. x-2.
D. 2x.
Câu 2. Cho a là số thực dương. Giá trị rút gọn của biểu thức là:
A. 2a.
B. a.
C. 1 - a.
D. 1 + a.
Câu 3. Cho hai số dương a, b với a ≠ 1. Số α thoả mãn aα = b, khi đó α bằng
A. .
B. .
C. .
D. .
Câu 4. Hàm số nào sau đây là hàm số mũ
A. .
B. y = -2x.
C. y = x-2.
D. y = x2.
Câu 5. Trong các hình sau, hình nào là dạng đồ thị của hàm số
A. (I).
B. (II).
C. (IV).
D. (III).
Câu 6. Một sinh viên gửi tiết kiệm ngân hàng lãi suất 13%/năm với hình thức lãi kép. Hỏi sau bao nhiêu năm sinh viên đó thu được gấp ba lần số tiền ban đầu, biết lãi suất cố định trong các năm.
A. 8 năm 9 tháng.
B. 15 năm 5 tháng.
C. 8 năm.
D. 9 năm.
Câu 7. Tổng các nghiệm thực của phương trình bằng
A. -7.
B. 5.
C. 6.
D. 7.
Câu 8. Tổng các giá trị nghiệm của phương trình bằng
A. 10.
B. .
C. 5.
D. .
Câu 9. Cho hàm số y = f(x) có đồ thị (C) và đạo hàm f'(2) = 6. Hệ số góc của tiếp tuyến của (C) tại điểm M(2;f(2)) bằng
A. 2.
B. 3.
C. 6.
D. 12.
Câu 10. Hàm số . Khi đó với thì khẳng định nào đúng ?
A. f'(a) = 2a + 3.
B. f'(a) = a2 + 1.
C. f'(a) = 2a + 2.
D. f'(a) = 2a.
Câu 11. Đạo hàm của hàm số y = 3x là
A. .
B. .
C. .
D. .
Câu 12. Một chất điểm chuyển động có phương trình s(t) = t + 1 (t tính bằng giây, s tính bằng mét). Vận tốc tức thời của chất điểm tại thời điểm t = 3s bằng
A. 1m/s.
B. 15m/s.
C. 4m/s.
D. 0m/s.
Câu 13. Hàm số y = x5 có đạo hàm cấp 2 là
A. 5x4.
B. 20x.
C. 20x3.
D. 5x3.
Câu 14. Cho f(x) = 201. Tính f''(x).
A. f''(x) = 2.
B. f''(x) = x.
C. f''(x) = 0.
D. f''(x) = 1.
Câu 15. Hàm số có đạo hàm cấp hai tại x = 1 là
A. .
B. .
C. .
D. .
Câu 16. Hàm số y = cot x có đạo hàm là:
A. .
B. .
C. .
D. .
Câu 17. Đạo hàm của hàm số y = 3x là
A. .
B. .
C. .
D. .
Câu 18. Cho . Biểu thức f'(1) có giá trị là bao nhiêu?
A. -1.
B. -2.
C. -12.
D. 1.
Câu 19. Đạo hàm của hàm số bằng biểu thức nào sau đây?
A. .
B. .
C. .
D. .
Câu 20. Tung một con xúc xắc, gọi A là biến cố: "Xuất hiện mặt có số chấm lớn hơn hoặc bằng 4", B là biến cố: " Xuất hiện mặt có số chấm nhỏ hơn hoặc bằng 2". Khẳng định nào sau đây là đúng?
A. A và B là hai biến cố xung khắc.
B. A và B là hai biến cố đối.
C. Cả A và B đều đúng.
D. Không đủ thông tin để kết luận.
Câu 21. Cho A, B là hai biến cố xung khắc. Biết P(A) = , P(B) = . Tính .
A. .
B. .
C. .
D. .
Câu 22. Hai xạ thủ M và N cùng bắn súng vào một tấm bia. Biết rằng xác suất bắn trúng của xạ thủ M là 0,3, của xạ thủ N là 0,2. Khả năng bắn trúng của hai xạ thủ là độc lập. Xác suất của biến cố "Cả hai xạ thủ đều bắn trúng" là
A. 0,05.
B. 0,06.
C. 0,07.
D. 0,08.
Câu 23. Gọi S là tập các số tự nhiên có 4 chữ số khác nhau được tạo từ tập E = {1;2;3;4;5}. Chọn ngẫu nhiên một số từ tập S. Tính xác suất để số được chọn là một số chẵn?
A. .
B. .
C. .
D. .
Câu 24. Gieo một đồng xu cân đối và đồng chất liên tiếp ba lần. Gọi A là biến cố “Có ít nhất hai mặt sấp xuất hiện liên tiếp” và B là biến cố “Kết quả ba lần gieo là như nhau”. Xác định biến cố .
A. .
B. .
C. .
D. .
Câu 25. Cho A, B là hai biến cố độc lập. Biết P(A) = 0,5; P(A ∩ B) = 0,2. Tính .
A. 0,3.
B. 0,5.
C. 0,6.
D. 0,7.
Câu 26. Cho hình lập phương ABCD.A'B'C'D'. Góc giữa hai đường thẳng A'C' và BD bằng.
A. 60°.
B. 30°.
C. 45°.
D. 90°.
Câu 27. Cho hình lập phương ABCD.A'B'C'D' như hình vẽ
Khẳng định nào sau đây đúng
A. .
B. .
C. .
D. .
Câu 28. Thể tích của khối lăng trụ có diện tích đáy B và chiều cao h là:
A. Bh.
B. Bh.
C. Bh.
D. 3Bh.
Câu 29. Cho hình chóp S.ABCD có ABCD là hình chữ nhật và SA ⊥ (ABCD). Mệnh đề nào dưới đây đúng ?
A. AB ⊥ (SAD).
B. BC ⊥ (SAD).
C. AC ⊥ (SAD).
D. BD ⊥ (SAD).
Câu 30. Cho khối chóp tứ giác đều S.ABCD có cạnh đáy bằng và tam giác SAC đều. Thể tích của khối chóp đã cho bằng
A. .
B. .
C. .
D. .
Câu 31. Cho hai mặt phẳng (P) và (Q) cắt nhau và một điểm M không thuộc (P) và (Q). Qua M có bao nhiêu mặt phẳng vuông góc với (P) và (Q)?
A. 1.
B. 2.
C. 3.
D. Vô số.
Câu 32. Cho hình chóp S.ABCD có ABCD là hình vuông, SA vuông góc với mặt phẳng đáy. Mặt phẳng (ABCD) vuông góc với mặt phẳng nào dưới đây ?
A. (SAC).
B. (SBD).
C. (SCD).
D. (SBC).
Câu 33. Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA ⊥ (ABCD). Tính khoảng cách từ điểm B đến mặt phẳng (SAC).
A. .
B. .
C. .
D. .
Câu 34. Trong các mệnh đề sau, mệnh đề nào đúng?
A. Góc giữa đường thẳng và mặt phẳng bằng góc giữa đường thẳng đó và hình chiếu của nó trên mặt phẳng đã cho.
B. Góc giữa đường thẳng a và mặt phẳng (P) bằng góc giữa đường thẳng b và mặt phẳng (P) khi a và b song song (hoặc a trùng với b).
C. Góc giữa đường thẳng a và mặt phẳng (P) bằng góc giữa đường thẳng a và mặt phẳng (Q) thì mặt phẳng (P) song song với mặt phẳng (Q).
D. Góc giữa đường thẳng a và mặt phẳng (P) bằng góc giữa đường thẳng b và mặt phẳng (P) thì a song song với b.
Câu 35. Cho hình chóp S.ABC có SA vuông góc với mặt phẳng (ABC), SA = 2a, tam giác ABC vuông tại B, AB = và BC = a (minh họa như hình vẽ bên). Góc giữa đường thẳng SC và mặt phẳng (ABC) bằng
A. 90°.
B. 45°.
C. 30°.
D. 60°.
II. Tự luận (3 điểm)
Bài 1. (1 điểm) a) Tính đạo hàm cấp hai của hàm số y = sinax (a là hằng số).
b) Một chất điểm chuyển động có quãng đường được cho bởi phương trình , trong đó t > 0 với t tính bằng giây (s) và s tính bằng mét (m). Tính vận tốc chuyển động của chất điểm tại thời điểm chất điểm có gia tốc chuyển động nhỏ nhất.
Bài 2. (1 điểm) Cho hình chóp S.ABCD có đáy là tam giác vuông cân tại A, SA ⊥ (ABC) và AB = a; SA = . Gọi H là trung điểm cạnh BC.
a) Chứng minh: BC ⊥ (SAH).
b) Tính góc giữa đường thẳng SH và mặt phẳng (ABC).
Bài 3. (1 điểm) Gọi A là tập hợp tất cả các số tự nhiên có 8 chữ số đôi một khác nhau. Chọn ngẫu nhiên một số thuộc A. Tính xác suất để số tự nhiên được chọn chia hết cho 25.
-----HẾT-----
Tham khảo đề thi Toán 11 bộ sách khác có đáp án hay khác:
Xem thêm đề thi lớp 11 Chân trời sáng tạo có đáp án hay khác:
- Giáo án lớp 11 (các môn học)
- Giáo án điện tử lớp 11 (các môn học)
- Giáo án Toán 11
- Giáo án Ngữ văn 11
- Giáo án Tiếng Anh 11
- Giáo án Vật Lí 11
- Giáo án Hóa học 11
- Giáo án Sinh học 11
- Giáo án Lịch Sử 11
- Giáo án Địa Lí 11
- Giáo án KTPL 11
- Giáo án HĐTN 11
- Giáo án Tin học 11
- Giáo án Công nghệ 11
- Giáo án GDQP 11
- Đề thi lớp 11 (các môn học)
- Đề thi Ngữ Văn 11 (có đáp án)
- Chuyên đề Tiếng Việt lớp 11
- Đề cương ôn tập Văn 11
- Đề thi Toán 11 (có đáp án)
- Đề thi Toán 11 cấu trúc mới
- Đề cương ôn tập Toán 11
- Đề thi Tiếng Anh 11 (có đáp án)
- Đề thi Tiếng Anh 11 mới (có đáp án)
- Đề thi Vật Lí 11 (có đáp án)
- Đề thi Hóa học 11 (có đáp án)
- Đề thi Sinh học 11 (có đáp án)
- Đề thi Lịch Sử 11
- Đề thi Địa Lí 11 (có đáp án)
- Đề thi KTPL 11
- Đề thi Tin học 11 (có đáp án)
- Đề thi Công nghệ 11
- Đề thi GDQP 11 (có đáp án)