Cho tam giác nhọn ABC có các đường cao BE, CF. Một đường tròn (O) đi qua hai điểm E, F
Bài 9.32 trang 57 sách bài tập Toán 9 Tập 2: Cho tam giác nhọn ABC có các đường cao BE, CF. Một đường tròn (O) đi qua hai điểm E, F và cắt các tia đối của hai tia BF, CE lần lượt tại X và Y. Chứng minh rằng XY song song với BC.
Lời giải:
Vì các tam giác vuông BED và BFC có chung cạnh huyền BC nên bốn điểm B, F, E, C cùng nằm trên đường tròn đường kính BC.
Do đó BFEC là tứ giác nội tiếp đường tròn bán kính BC.
Vì tổng các góc đối nhau của các tứ giác nội tiếp BFEC và XFEY bằng 180° nên ta có:
Do đó BC // XY (do hai góc đồng vị bằng nhau).
Lời giải SBT Toán 9 Bài 29: Tứ giác nội tiếp hay khác:
Xem thêm giải sách bài tập Toán lớp 9 Kết nối tri thức hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 9 hay khác:
- Giải sgk Toán 9 Kết nối tri thức
- Giải SBT Toán 9 Kết nối tri thức
- Giải lớp 9 Kết nối tri thức (các môn học)
- Giải lớp 9 Chân trời sáng tạo (các môn học)
- Giải lớp 9 Cánh diều (các môn học)
Giải bài tập lớp 9 Kết nối tri thức khác
- Soạn văn 9 (hay nhất) - KNTT
- Soạn văn 9 (ngắn nhất) - KNTT
- Giải sgk Toán 9 - KNTT
- Giải Tiếng Anh 9 Global Success
- Giải sgk Tiếng Anh 9 Smart World
- Giải sgk Tiếng Anh 9 Friends plus
- Giải sgk Khoa học tự nhiên 9 - KNTT
- Giải sgk Lịch Sử 9 - KNTT
- Giải sgk Địa Lí 9 - KNTT
- Giải sgk Giáo dục công dân 9 - KNTT
- Giải sgk Tin học 9 - KNTT
- Giải sgk Công nghệ 9 - KNTT
- Giải sgk Hoạt động trải nghiệm 9 - KNTT
- Giải sgk Âm nhạc 9 - KNTT
- Giải sgk Mĩ thuật 9 - KNTT