Bài 38 trang 84 SBT Toán 8 Tập 1



Bài 4: Đường trung bình của tam giác, của hình thang

Bài 38 trang 84 SBT Toán 8 Tập 1: Cho tam giác ABC, các đường trung tuyến BD và CE cắt nhau ở G. Gọi I, K theo thứ tự là trung điểm của GB, GC. Chứng minh rằng DE//IK, DE= IK.

Lời giải:

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

* Trong ΔABC, ta có:

E là trung điểm của AB và D là trung điểm của AC (giả thiết)

Nên ED là đường trung bình của ΔABC.

⇒ ED // BC và ED = BC 2 (tính chất đường trung bình của tam giác) (l)

* Trong ΔGBC, ta có:

I là trung điểm của BG 

K là trung điểm của CG (giả thiết)

Suy ra IK là đường trung bình của ΔGBC.

⇒ IK // BC và IK= BC 2 (tính chất đường trung bình của tam giác) (2)

Từ (l) và (2) suy ra: IK // DE, IK = DE.

Các bài giải bài tập sách bài tập Toán 8 (SBT Toán 8) khác:

Xem thêm các loạt bài Để học tốt Toán lớp 8 hay khác:


bai-4-duong-trung-binh-cua-tam-giac-cua-hinh-thang.jsp


Giải bài tập lớp 8 sách mới các môn học