Bài 36 trang 84 SBT Toán 8 Tập 1



Bài 4: Đường trung bình của tam giác, của hình thang

Bài 36 trang 84 SBT Toán 8 Tập 1: Cho tứ giác ABCD. Gọi E, F, I theo thứ tự là trung điểm của AD, BC, AC. Chứng minh rằng:

a. EI//CD, IF//AB

b. EF AB+CD 2

Lời giải:

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

a) * Trong tam giác ADC, ta có:

E là trung điểm của AD và I là trung điểm của AC (gt)

Nên EI là đường trung bình của ΔADC.

⇒ EI // CD (tính chất đường trung bình của tam giác) và EI= CD 2 .

* Trong tam giác ABC, ta có:

I là trung điểm của AC và F là trung điểm của BC

Nên IF là đường trung bình của ΔABC.

⇒ IF // AB (tính chất đường trung bình của tam giác) và IF= AB 2

b) Với 3 điểm E, I, F bất kì ta có: EF ≤ EI + IF (dấu “ = ” xảy ra khi I nằm giữa E và F) mà EI= CD 2 ; IF= AB 2 (chứng minh trên)

EF CD 2 + AB 2

Vậy EF AB+CD 2 (dấu bằng xảy ra khi AB // CD).

Các bài giải bài tập sách bài tập Toán 8 (SBT Toán 8) khác:

Xem thêm các loạt bài Để học tốt Toán lớp 8 hay khác:


bai-4-duong-trung-binh-cua-tam-giac-cua-hinh-thang.jsp


Giải bài tập lớp 8 sách mới các môn học