Bài 34 trang 84 SBT Toán 8 Tập 1



Bài 4: Đường trung bình của tam giác, của hình thang

Bài 34 trang 84 SBT Toán 8 Tập 1: Cho tam giác ABC, điểm D thuộc cạnh AC sao cho AD = 1 2 DC. Gọi M là trung điểm của BC, I là giao điểm của BD và AM. Chứng minh: AI = IM.

Lời giải:

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Gọi E là trung điểm của DC

Trong ΔBDC, ta có:

M là trung điểm của BC (gt)

E là trung điểm của CD (gt)

Nên ME là đường trung bình của ∆BCD

⇒ME // BD (tính chất đường trung bình tam giác)

Suy ra: DI // ME

Ta có: AD = 1 2 DC (gt)

DE = 1 2 DC (cách vẽ)

⇒ AD = DE nên D là trung điểm của AE

Xét tam giác AEM có:

 D là trung điểm của AE và DI // ME nên DI đi qua trung điểm của AM nên I là trung điểm của AM

Nên AI= IM (tính chất).

Các bài giải bài tập sách bài tập Toán 8 (SBT Toán 8) khác:

Xem thêm các loạt bài Để học tốt Toán lớp 8 hay khác:


bai-4-duong-trung-binh-cua-tam-giac-cua-hinh-thang.jsp


Giải bài tập lớp 8 sách mới các môn học