Bài 85 trang 53 SBT Toán 7 Tập 2



Ôn tập chương 3 - Phần Hình học

Bài 85 trang 53 sách bài tập Toán 7 Tập 2: Cho bốn điểm A, B, C, D như hình bên. Hãy tìm một điểm M sao cho tổng MA + MB + MC + MD là nhỏ nhất.

Lời giải:

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

* Nếu M không trùng với giao điểm của AC và BD

Trong ΔAMC, ta có: MA + MC > AC (bất đẳng thức tam giác)

Trong ΔMBD, ta có: MB + MD > BD (bất đẳng thức tam giác)

* Nếu M trùng với giao điểm AC và BD

Ta có: MA + MC = AC

MB + MD = BD

+) Kết hợp cả hai trường hợp, suy ra: MA + MC ≥ AC

Và MB + MD ≥ BD (dấu bằng xảy ra khi M trùng với giao điểm của AC và BD)

Suy ra: MA + MB + MC + MD ≥ AC + BD

Vậy MA + MB + MC + MD = AC + BD bé nhất khi đó M là giao điểm của AC và BD.

Các bài giải bài tập sách bài tập Toán 7 (SBT Toán 7) khác:

Xem thêm các loạt bài Để học tốt Toán 7 hay khác:

Giới thiệu kênh Youtube hoconline


on-tap-chuong-3-phan-hinh-hoc.jsp