Các dạng bài tập Cung và góc lượng giác, Công thức lượng giác chọn lọc có lời giải
Phần dưới là Chuyên đề tổng hợp Lý thuyết và Bài tập Toán 10 Đại số Chương 6: Cung và góc lượng giác. Công thức lượng giác có đáp án. Bạn vào tên bài hoặc Xem chi tiết để theo dõi các chuyên đề Toán lớp 10 Đại số tương ứng.
- Lý thuyết Cung và góc lượng giác Xem chi tiết
- Lý thuyết Giá trị lượng giác của một cung Xem chi tiết
- Lý thuyết Công thức lượng giác Xem chi tiết
- Lý thuyết Tổng hợp chương Cung và góc lượng giác. Công thức lượng giác Xem chi tiết
- Góc và cung lượng giác và cách giải
- Giá trị lượng giác của một cung và cách giải
- Công thức lượng giác và cách giải bài tập
- Cách đổi độ sang radian và radian sang độ (cực hay, chi tiết) Xem chi tiết
- Cách tính độ dài cung tròn (cực hay, chi tiết) Xem chi tiết
- Cách tính giá trị lượng giác của một góc, của một cung (cực hay, chi tiết) Xem chi tiết
- Công thức lượng giác cơ bản (cực hay, chi tiết) Xem chi tiết
- Giá trị lượng giác của các cung có liên quan đặc biệt (cực hay, chi tiết) Xem chi tiết
- Cho một giá trị lượng giác, tính các giá trị lượng giác còn lại (cực hay, chi tiết) Xem chi tiết
- Cách làm bài tập Công thức cộng lượng giác (cực hay, chi tiết) Xem chi tiết
- Cách giải bài tập Công thức nhân đôi lượng giác (cực hay, chi tiết) Xem chi tiết
- Cách giải bài tập Công thức biến đổi tích thành tổng (cực hay, chi tiết) Xem chi tiết
- Cách giải bài tập Công thức biến đổi tổng thành tích (cực hay, chi tiết) Xem chi tiết
Cách làm bài tập Công thức cộng lượng giác
Nhắc lại công thức cộng lượng giác:
Phương pháp giải: Áp dụng các công thức biến đổi trên.
Ví dụ 1:
Hướng dẫn giải:
Ví dụ 2: Tính giá trị các biểu thức
a, A = cos32ocos28o - sin32osin28o
b, B = cos74ocos29o + sin74osin29o
c, C = sin23ocos7o + sin7ocos23o
d, D = sin59ocos14o - sin14ocos59o
Hướng dẫn giải:
Ví dụ 3:
Hướng dẫn giải:
Cách giải bài tập Công thức nhân đôi lượng giác
Để làm bài tập dạng này, ta cần nắm vững các công thức lượng giác đã học và công thức nhân đôi, công thức hạ bậc như sau:
Ví dụ 1: Tính các giá trị lượng giác của cung 2α trong các trường hợp sau:
Hướng dẫn giải:
Vì nên điểm cuối của cung α thuộc góc phần tư thứ I, do đó sinα > 0
Vì nên điểm cuối của cung α thuộc góc phần tư thứ II, do đó cosα < 0
Vì nên điểm cuối của cung α thuộc góc phần tư thứ III, do đó cosα < 0
Ví dụ 2: Chứng minh đẳng thức:
Hướng dẫn giải:
Ví dụ 3: Cho . Biết với a, b là phân số tối giản. Tính p – q.
A. 3
B. 1
C. –3
D. –1
Hướng dẫn giải:
Đáp án C
Cách giải bài tập Công thức biến đổi tích thành tổng
Để làm bài tập dạng này, ta phải nắm vững công thức biến đổi tích thành tổng và áp dụng để biến đổi.
Công thức biến đổi tích thành tổng:
Ví dụ 1: Tính giá trị của biểu thức
Hướng dẫn giải:
Ví dụ 2: Biến đổi thành tổng: A = 2 sinx.sin2x.sin3x
Hướng dẫn giải:
Ví dụ 3: Cho . Tính P = sinα.cos3α + cos2α
Hướng dẫn giải:
Xem thêm các dạng bài tập Toán lớp 10 chọn lọc, có lời giải hay khác:
- Chuyên đề: Mệnh đề - Tập hợp
- Chuyên đề: Hàm số bậc nhất và bậc hai
- Chuyên đề: Phương trình. Hệ phương trình
- Chuyên đề: Bất đẳng thức. Bất phương trình
- Chuyên đề: Thống kê
- Chuyên đề: Vectơ
- Chuyên đề: Tích vô hướng của hai vectơ và ứng dụng
- Chuyên đề: Phương pháp tọa độ trong mặt phẳng
Lời giải bài tập lớp 10 sách mới:
- Giải bài tập Lớp 10 Kết nối tri thức
- Giải bài tập Lớp 10 Chân trời sáng tạo
- Giải bài tập Lớp 10 Cánh diều
- Giải Tiếng Anh 10 Global Success
- Giải Tiếng Anh 10 Friends Global
- Giải sgk Tiếng Anh 10 iLearn Smart World
- Giải sgk Tiếng Anh 10 Explore New Worlds
- Lớp 10 - Kết nối tri thức
- Soạn văn 10 (hay nhất) - KNTT
- Soạn văn 10 (ngắn nhất) - KNTT
- Soạn văn 10 (siêu ngắn) - KNTT
- Giải sgk Toán 10 - KNTT
- Giải sgk Vật lí 10 - KNTT
- Giải sgk Hóa học 10 - KNTT
- Giải sgk Sinh học 10 - KNTT
- Giải sgk Địa lí 10 - KNTT
- Giải sgk Lịch sử 10 - KNTT
- Giải sgk Kinh tế và Pháp luật 10 - KNTT
- Giải sgk Tin học 10 - KNTT
- Giải sgk Công nghệ 10 - KNTT
- Giải sgk Hoạt động trải nghiệm 10 - KNTT
- Giải sgk Giáo dục quốc phòng 10 - KNTT
- Lớp 10 - Chân trời sáng tạo
- Soạn văn 10 (hay nhất) - CTST
- Soạn văn 10 (ngắn nhất) - CTST
- Soạn văn 10 (siêu ngắn) - CTST
- Giải Toán 10 - CTST
- Giải sgk Vật lí 10 - CTST
- Giải sgk Hóa học 10 - CTST
- Giải sgk Sinh học 10 - CTST
- Giải sgk Địa lí 10 - CTST
- Giải sgk Lịch sử 10 - CTST
- Giải sgk Kinh tế và Pháp luật 10 - CTST
- Giải sgk Hoạt động trải nghiệm 10 - CTST
- Lớp 10 - Cánh diều
- Soạn văn 10 (hay nhất) - Cánh diều
- Soạn văn 10 (ngắn nhất) - Cánh diều
- Soạn văn 10 (siêu ngắn) - Cánh diều
- Giải sgk Toán 10 - Cánh diều
- Giải sgk Vật lí 10 - Cánh diều
- Giải sgk Hóa học 10 - Cánh diều
- Giải sgk Sinh học 10 - Cánh diều
- Giải sgk Địa lí 10 - Cánh diều
- Giải sgk Lịch sử 10 - Cánh diều
- Giải sgk Kinh tế và Pháp luật 10 - Cánh diều
- Giải sgk Tin học 10 - Cánh diều
- Giải sgk Công nghệ 10 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 10 - Cánh diều
- Giải sgk Giáo dục quốc phòng 10 - Cánh diều