Các dạng bài tập Vectơ chọn lọc có lời giải



Bài viết Các dạng bài tập Vectơ chọn lọc với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Các dạng bài tập Vectơ chọn lọc.

Bài giảng: Bài 1: Các định nghĩa vectơ - Thầy Lê Thành Đạt (Giáo viên VietJack)

Phần dưới là Chuyên đề tổng hợp Lý thuyết và Bài tập Toán 10 Đại số Chương 1: Vectơ có đáp án. Bạn vào tên bài hoặc Xem chi tiết để theo dõi các chuyên đề Toán lớp 10 Đại số tương ứng.

Chứng minh 2 vecto cùng phương, 2 vecto cùng hướng

Chứng minh 2 vecto cùng phương, 2 vecto cùng hướng hay, chi tiết Định nghĩa:

- Giá của vecto là đường thẳng đi qua điểm đầu và điểm cuối của vecto đó.

- Hai vecto được gọi là cùng phương nếu giá của chúng song song hoặc trùng nhau.

- Hai vecto cùng phương có thể cùng hướng hoặc ngược hướng.

- Quy ước: Vecto – không (ký hiệu Chứng minh 2 vecto cùng phương, 2 vecto cùng hướng hay, chi tiết) cùng phương, cùng hướng với mọi vecto.

Chứng minh 2 vecto cùng phương, 2 vecto cùng hướng hay, chi tiết

Ba vecto Chứng minh 2 vecto cùng phương, 2 vecto cùng hướng hay, chi tiết được gọi là cùng phương với nhau

Vecto Chứng minh 2 vecto cùng phương, 2 vecto cùng hướng hay, chi tiết cùng hướng với Chứng minh 2 vecto cùng phương, 2 vecto cùng hướng hay, chi tiết, vecto Chứng minh 2 vecto cùng phương, 2 vecto cùng hướng hay, chi tiết ngược hướng với vecto Chứng minh 2 vecto cùng phương, 2 vecto cùng hướng hay, chi tiết

Chứng minh 2 vecto cùng phương, 2 vecto cùng hướng hay, chi tiết Phương pháp giải:

Chứng minh 2 vecto cùng phương, 2 vecto cùng hướng hay, chi tiết Để chứng minh hai vecto cùng phương, ta chứng minh giá của hai vecto đó song song hoặc trùng nhau. ( quan hệ từ vuông góc đến song song, cùng song song với 1 đường thẳng thứ ba, định lí Talet, tính chất đường trung bình của tam giác, hình thang, các góc vị trí so le trong – đồng vị bằng nhau ....)

Chứng minh 2 vecto cùng phương, 2 vecto cùng hướng hay, chi tiết Để chứng minh hai vecto cùng hướng, ta chứng minh hai vecto đó cùng phương và xét hướng của hai vecto đó.

Ví dụ 1: Cho lục giác đều ABCDEF tâm O. Số các vecto khác không, cùng phương với vecto Chứng minh 2 vecto cùng phương, 2 vecto cùng hướng hay, chi tiết có điểm đầu và điểm cuối là các đỉnh của lục giác là:

A. 4

B. 6

C. 8

D. 10

Hướng dẫn giải:

Do ABCDEF là lục giác đều tâm O

Suy ra BE // CD // AF

Do đó OB // CD // AF

Do đó các vecto cùng phương với vecto

Chứng minh 2 vecto cùng phương, 2 vecto cùng hướng hay, chi tiết mà có điểm đầu và điểm cuối là

đỉnh của hình lục giác là các vecto:

Chứng minh 2 vecto cùng phương, 2 vecto cùng hướng hay, chi tiết

Vậy có 6 vecto.

Đáp án B

Chứng minh 2 vecto cùng phương, 2 vecto cùng hướng hay, chi tiết

Ví dụ 2: Cho hai vecto không cùng phương Chứng minh 2 vecto cùng phương, 2 vecto cùng hướng hay, chi tiết, Chứng minh 2 vecto cùng phương, 2 vecto cùng hướng hay, chi tiết. Khẳng định nào sau đây đúng?

A. Không có vectơ nào cùng phương với cả hai vectơ Chứng minh 2 vecto cùng phương, 2 vecto cùng hướng hay, chi tiết.

B. Có vô số vectơ cùng phương với cả hai vectơ Chứng minh 2 vecto cùng phương, 2 vecto cùng hướng hay, chi tiết.

C. Có một vectơ cùng phương với cả hai vectơ Chứng minh 2 vecto cùng phương, 2 vecto cùng hướng hay, chi tiết, đó là vectơ Chứng minh 2 vecto cùng phương, 2 vecto cùng hướng hay, chi tiết.

D. Cả A, B, C đều sai.

Hướng dẫn giải:

+ Theo quy ước, vecto Chứng minh 2 vecto cùng phương, 2 vecto cùng hướng hay, chi tiết cùng phương, cùng hướng với mọi vecto (lý thuyết), do đó đáp án C đúng, từ đó suy ra đáp án A và D là đáp án sai.

+ Đáp án B: có vô số vecto cùng phương với cả hai vecto Chứng minh 2 vecto cùng phương, 2 vecto cùng hướng hay, chi tiết là sai

Thật vậy, giả sử có 1 vecto Chứng minh 2 vecto cùng phương, 2 vecto cùng hướng hay, chi tiết cùng phương với cả hai vecto Chứng minh 2 vecto cùng phương, 2 vecto cùng hướng hay, chi tiết

Gọi giá của vecto Chứng minh 2 vecto cùng phương, 2 vecto cùng hướng hay, chi tiết là đường thẳng m, giá của vecto Chứng minh 2 vecto cùng phương, 2 vecto cùng hướng hay, chi tiết là đường thẳng a, và giá của vecto Chứng minh 2 vecto cùng phương, 2 vecto cùng hướng hay, chi tiết là đường thẳng b.

Khi đó Chứng minh 2 vecto cùng phương, 2 vecto cùng hướng hay, chi tiết mâu thuẫn với giả thiết hai vecto Chứng minh 2 vecto cùng phương, 2 vecto cùng hướng hay, chi tiết không cùng phương.

Đáp án C

Bài tập về Quy tắc hình bình hành của vecto

Áp dụng quy tắc hình bình hành và các tính chất của hình hình hành đã học ở lớp 8 để giải bài tập.

Quy tắc hình bình hành

Nếu ABCD là hình bình hành thì ta có

Bài tập về Quy tắc hình bình hành của vecto (cực hay, chi tiết)

Quy tắc này cũng đúng nếu ta xuất từ các

đỉnh khác của hình bình hành.

Bài tập về Quy tắc hình bình hành của vecto (cực hay, chi tiết)

Ví dụ 1: Cho hình bình hành ABCD tâm O. Tính các vecto sau

Bài tập về Quy tắc hình bình hành của vecto (cực hay, chi tiết)

Hướng dẫn giải:

Bài tập về Quy tắc hình bình hành của vecto (cực hay, chi tiết)

a, Bài tập về Quy tắc hình bình hành của vecto (cực hay, chi tiết) theo quy tắc hình bình hành

b, Vì AB // CD nên ta có Bài tập về Quy tắc hình bình hành của vecto (cực hay, chi tiết)

Do đó: Bài tập về Quy tắc hình bình hành của vecto (cực hay, chi tiết)

c, Bài tập về Quy tắc hình bình hành của vecto (cực hay, chi tiết)

= Bài tập về Quy tắc hình bình hành của vecto (cực hay, chi tiết)(sử dụng tính chất giao hoán)

= Bài tập về Quy tắc hình bình hành của vecto (cực hay, chi tiết) (quy tắc ba điểm)

d,

Vì ABCD là hình bình hành tâm O nên O là trung điểm của AC

Suy ra AO = OC Bài tập về Quy tắc hình bình hành của vecto (cực hay, chi tiết)

Ta có: Bài tập về Quy tắc hình bình hành của vecto (cực hay, chi tiết)(tính chất giao hoán)

Bài tập về Quy tắc hình bình hành của vecto (cực hay, chi tiết) = (quy tắc ba điểm)

Ví dụ 2: Cho hình chữ nhật ABCD có AB = 4a và AD = 3a. Tính độ dài Bài tập về Quy tắc hình bình hành của vecto (cực hay, chi tiết)

Hướng dẫn giải:

ABCD là hình chữ nhật, suy ra ABCD cũng là hình bình hành, nên ta áp dụng quy tắc hình bình hành ta được: Bài tập về Quy tắc hình bình hành của vecto (cực hay, chi tiết)

Suy ra Bài tập về Quy tắc hình bình hành của vecto (cực hay, chi tiết) = AC

Ta lại có: AC = Bài tập về Quy tắc hình bình hành của vecto (cực hay, chi tiết)

Vậy Bài tập về Quy tắc hình bình hành của vecto (cực hay, chi tiết) = 5a.

Cách phân tích một vecto theo hai vecto không cùng phương

Sử dụng định lý về phân tích vecto:

Phân tích vecto: Cho hai vecto không cùng phương Cách phân tích một vecto theo hai vecto không cùng phương (cực hay, chi tiết), Cách phân tích một vecto theo hai vecto không cùng phương (cực hay, chi tiết). Khi đó mọi Cách phân tích một vecto theo hai vecto không cùng phương (cực hay, chi tiết) đều được phân tích duy nhất: Cách phân tích một vecto theo hai vecto không cùng phương (cực hay, chi tiết)

Cách phân tích một vecto theo hai vecto không cùng phương (cực hay, chi tiết)

Cách phân tích một vecto theo hai vecto không cùng phương (cực hay, chi tiết) Sử dụng quy tắc hình bình hành, quy tắc 3 điểm,công thức trung điểm, trọng tâm…

Cách phân tích một vecto theo hai vecto không cùng phương (cực hay, chi tiết) Nếu hai vecto Cách phân tích một vecto theo hai vecto không cùng phương (cực hay, chi tiết); Cách phân tích một vecto theo hai vecto không cùng phương (cực hay, chi tiết) cùng hướng và Cách phân tích một vecto theo hai vecto không cùng phương (cực hay, chi tiết)

Cách phân tích một vecto theo hai vecto không cùng phương (cực hay, chi tiết) Nếu hai vecto Cách phân tích một vecto theo hai vecto không cùng phương (cực hay, chi tiết); Cách phân tích một vecto theo hai vecto không cùng phương (cực hay, chi tiết) ngược hướng và Cách phân tích một vecto theo hai vecto không cùng phương (cực hay, chi tiết)

Ví dụ 1: Cho AK và BM là hai trung tuyến của tam giác ABC. Hãy phân tích vecto Cách phân tích một vecto theo hai vecto không cùng phương (cực hay, chi tiết) theo hai vecto Cách phân tích một vecto theo hai vecto không cùng phương (cực hay, chi tiết).

Hướng dẫn giải:

Cách phân tích một vecto theo hai vecto không cùng phương (cực hay, chi tiết)

Vì M là trung điểm của AC nên Cách phân tích một vecto theo hai vecto không cùng phương (cực hay, chi tiết)

Vì K là trung điểm của BC nên Cách phân tích một vecto theo hai vecto không cùng phương (cực hay, chi tiết)

Cách phân tích một vecto theo hai vecto không cùng phương (cực hay, chi tiết)

Ví dụ 2: Cho hình bình hành ABCD. Gọi M, N là các điểm nằm trên các cạnh AB và CD sao cho AM = Cách phân tích một vecto theo hai vecto không cùng phương (cực hay, chi tiết) AB, CN = Cách phân tích một vecto theo hai vecto không cùng phương (cực hay, chi tiết) CD. Gọi G là trọng tâm của tam giác BMN. Hãy phân tích Cách phân tích một vecto theo hai vecto không cùng phương (cực hay, chi tiết) theo hai vecto Cách phân tích một vecto theo hai vecto không cùng phương (cực hay, chi tiết).

Hướng dẫn giải:

Cách phân tích một vecto theo hai vecto không cùng phương (cực hay, chi tiết)

Cách phân tích một vecto theo hai vecto không cùng phương (cực hay, chi tiết)

Cách phân tích một vecto theo hai vecto không cùng phương (cực hay, chi tiết)

Ví dụ 3: Cho tam giác ABC. Gọi I là điểm trên cạnh BC sao cho 2CI = 3BI và J là điểm nằm trên tia đối của BC sao cho 5JB = 2JC. Phân tích vecto Cách phân tích một vecto theo hai vecto không cùng phương (cực hay, chi tiết) theo Cách phân tích một vecto theo hai vecto không cùng phương (cực hay, chi tiết)

Hướng dẫn giải:

Cách phân tích một vecto theo hai vecto không cùng phương (cực hay, chi tiết)

Cách phân tích một vecto theo hai vecto không cùng phương (cực hay, chi tiết)

Cách phân tích một vecto theo hai vecto không cùng phương (cực hay, chi tiết)

Cách phân tích một vecto theo hai vecto không cùng phương (cực hay, chi tiết)

Cách phân tích một vecto theo hai vecto không cùng phương (cực hay, chi tiết)

Cách phân tích một vecto theo hai vecto không cùng phương (cực hay, chi tiết)

Xem thêm các dạng bài tập Toán lớp 10 chọn lọc, có lời giải hay khác:

Lời giải bài tập lớp 10 sách mới:




Giải bài tập lớp 10 sách mới các môn học