Cho tam giác ABC vuông tại A có đường cao AH
Bài 9.45 trang 63 SBT Toán lớp 8 Tập 2: Cho tam giác ABC vuông tại A có đường cao AH. Từ H kẻ đường thẳng HE vuông góc với AB (E thuộc AB). Chứng minh rằng:
a) ∆ABC ᔕ ∆HAC và CA2 = CH . CB.
b) .
Lời giải:
a) Vì AH là đường cao trong tam giác ABC nên AH vuông góc với BC.
Tam giác ABC vuông tại A và tam giác HAC vuông tại H có:
chung
Do đó, ∆ABC ᔕ ∆HAC (góc nhọn).
Suy ra nên AC2 = CH . BC.
b)
Vì HE vuông góc với AB (E thuộc AB) nên .
Ta có và (do tam giác CAH vuông tại H).
Do đó, (cùng phụ với góc CAH).
Tam giác AHE vuông ở E và tam giác CBA vuông ở A có:
Do đó, ∆AHE ᔕ ∆CBA (hai góc nhọn bằng nhau).
Suy ra: .
Lời giải SBT Toán 8 Bài 36: Các trường hợp đồng dạng của hai tam giác vuông hay khác:
Xem thêm giải sách bài tập Toán lớp 8 Kết nối tri thức hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 8 hay khác:
- Giải sgk Toán 8 Kết nối tri thức
- Giải SBT Toán 8 Kết nối tri thức
- Giải lớp 8 Kết nối tri thức (các môn học)
- Giải lớp 8 Chân trời sáng tạo (các môn học)
- Giải lớp 8 Cánh diều (các môn học)
- Soạn văn 8 (hay nhất) - KNTT
- Soạn văn 8 (ngắn nhất) - KNTT
- Giải sgk Toán 8 - KNTT
- Giải Tiếng Anh 8 Global Success
- Giải sgk Tiếng Anh 8 Smart World
- Giải sgk Tiếng Anh 8 Friends plus
- Giải sgk Khoa học tự nhiên 8 - KNTT
- Giải sgk Lịch Sử 8 - KNTT
- Giải sgk Địa Lí 8 - KNTT
- Giải sgk Giáo dục công dân 8 - KNTT
- Giải sgk Tin học 8 - KNTT
- Giải sgk Công nghệ 8 - KNTT
- Giải sgk Hoạt động trải nghiệm 8 - KNTT
- Giải sgk Âm nhạc 8 - KNTT