Dựa vào đồ thị của hàm số bậc hai được cho hãy giải các bất phương trình sau

Bài 4 trang 22 SBT Toán 10 Tập 2: Dựa vào đồ thị của hàm số bậc hai được cho, hãy giải các bất phương trình sau:

Dựa vào đồ thị của hàm số bậc hai được cho hãy giải các bất phương trình sau

Lời giải:

a) Ta thấy đồ thị hàm số f ( x ) cắt trục hoành tại hai điểm x = 32 và x = 4, khi 32 ≤ x ≤ 4 thì đồ thị hàm số nằm trên trục hoành nên khi 32 ≤ x ≤ 4.

Vậy f(x) ≥ 0 khi x ∈ 32;4.

b) khi đồ thị hàm số f ( x ) nằm trên trục hoành hay x < –1 hoặc x > 3.

Vậy f(x) > 0 khi (– ∞; – 1) ∪ (3; +∞).

c) Dựa vào hình vẽ ta thấy:

Đồ thị hàm số cắt trục hoành tại x = 1.

Với x ≠ 1 đồ thị hàm số nằm hoàn toàn phía trên trục hoành.

Do đó f(x) ≤ 0 khi x = 1.

Vậy f(x) ≤ 0 khi x = 1.

d) f(x) < 0 vô nghiệm vì ta thấy đồ thị hàm số f ( x ) hoàn toàn nằm trên trục hoành.

Vậy không tồn tại giá trị của x để f(x) < 0.

e) Dựa vào hình vẽ ta thấy:

Đồ thị hàm số cắt trục hoành tại x = 3.

Đồ thị nằm hoàn toàn phía dưới trục hoành với x ≠ 3.

Do đó f(x) < 0 khi x ≠ 3.

Vậy f(x) < 0 khi x ≠ 3.

g) Ta có thể thấy đồ thị hàm số f ( x ) hoàn toàn nằm dưới trục hoành nên f(x) ≤ 0 với mọi x ∈ ℝ.

Vậy f(x) ≤ 0 với mọi x ∈ ℝ.

Lời giải SBT Toán 10 Bài tập cuối chương 7 hay khác:

Xem thêm các bài giải sách bài tập Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:


Giải bài tập lớp 10 Chân trời sáng tạo khác