Đề thi Toán 9 Giữa học kì 2 năm 2024 có đáp án (50 đề)
Nhằm mục đích giúp bạn làm tốt các bài thi Toán 9 năm học 2024 - 2025, phần dưới là Top 4 Đề thi Toán 9 Giữa học kì 2 chọn lọc, có đáp án, cực sát đề thi chính thức. Hi vọng bộ đề thi này sẽ giúp bạn ôn tập & đạt điểm cao trong các bài thi Toán 9.
Chỉ từ 150k mua trọn bộ trên 80 Đề thi Giữa kì 2 Toán 9 bản word có lời giải chi tiết:
- B1: gửi phí vào tk:
0711000255837
- NGUYEN THANH TUYEN - Ngân hàng Vietcombank (QR) - B2: Nhắn tin tới Zalo VietJack Official - nhấn vào đây để thông báo và nhận đề thi
Phòng Giáo dục và Đào tạo .....
Đề thi Giữa học kì 2
Môn: Toán 9
Thời gian làm bài: 90 phút
(Đề 1)
Bài 1 (2,5 điểm)
Trong mặt phẳng tọa độ Oxy, cho Parabol và đường thẳng
- Tìm tọa độ giao điểm của (P) và (Q).
- Gọi A, B là hai giao điểm của (P) và (Q). Tính diện tích tam giác OAB,
Bài 2 (2,5 điểm) Giải bài toán bằng cách lập phương trình hoặc hệ phương trình:
Trong tháng đầu, hai tổ sản xuất được 860 chi tiết máy. Đến tháng thứ hai, tổ I vượt mức 15%, tổ II vượt mức 10%. Do đó, tháng thứ hai cả 2 tổ sản xuất được 964 chi tiết máy. Tính số chi tiết máy mỗi tổ đã sản xuất được trong tháng đầu.
Bài 3 (4,0 điểm)
Cho đường tròn tâm O đường kính AB. Dây CD vuông góc với AB tại E (E nằm giữa A và O; E không trùng A, không trùng O). Lấy điểm M thuộc cung nhỏ BC sao cho cung MB nhỏ hơn cung MC. Dây AM cắt CD tại F. Tia BM cắt đường thẳng CD tại K.
- Chứng minh tứ giác BMFE nội tiếp.
- Chứng minh BF vuông góc với AK và EK.EF = EA.EB
- Tiếp tuyến của (O) tại M cắt tia KD tại I. Chứng minh IK = IF.
Bài 4. (1,0 điểm) Với các số a, b, c > 0 và thỏa mãn a + b + c = 1
Chứng minh
Đáp án và Hướng dẫn làm bài
Câu 1:
a. Hoành độ giao điểm của (P) và (Q) là nghiệm của phương trình:
b. Gọi A, B là hai giao điểm của (P) và )Q). Tính diện tích tam giác OAB.
Câu 2:
Gọi số chi tiết máy mỗi tổ đã sản xuất được trong tháng đầu là x, y (, chi tiết máy)
Vì trong tháng đầu, hai tổ sản xuất được 860 chi tiết máy nên ta có phương trình:
Vì đến tháng thứ hai, tổ I vượt mức 15%, tổ II vượt mức 10%. Do đó, tháng thứ hai cả 2 tổ sản xuất được 964 chi tiết máy, nên ta có phương trình:
Từ (1) và (2) ta có hệ phương trình:
Vậy trong tháng đầu, số chi tiết máy mỗi tổ đã sản xuất được lần lượt là: 360 và 500.
Câu 3:
a. Chứng minh tứ giác BMFE nội tiếp.
Ta có
Nên 4 điểm E, F, M, B cùng thuộc đường tròn đường kính BF, suy ra tứ giác BMFE nội tiếp.
b. Chứng minh BF vuông góc với AK và EK.EF = EA.EB
Nên F là trực tâm, suy ra
c. Tiếp tuyến của (O) tại M cắt tia KD tại I. Chứng minh IK = IF.
Ta có:
Câu 4:
Ta có:
CMTT:
Mặt khác:
Từ (1) và (2)
Dấu “=” xảy ra khi
Phòng Giáo dục và Đào tạo .....
Đề thi Giữa học kì 2
Môn: Toán 9
Thời gian làm bài: 90 phút
(Đề 2)
I.PHẦN TRẮC NGHIỆM (2,0 điểm)
(Hãy chọn phương án đúng và viết chữ cái đứng trước phương án đó vào bài làm)
Câu 1. Rút gọn biểu thức được kết quả là:
Câu 2. Phương trình có nghiệm là:
Câu 3. Đồ thị hàm số đi qua điểm có tọa độ là
Câu 4. Phương trình nào sau đây có ít nhất một nghiệm nguyên?
Câu 5. Phương trình (m là tham số) có nghiệm khi và chỉ khi:
Câu 6. Cho đường tròn tâm (O; R) và dây cung BC = R. Hai tiếp tuyến của đường tròn (O) tại B, C cắt nhau tại A. Khi đó bằng:
Câu 7. Cho tam giác đều MNE ngoại tiếp đường tròn bán kính 1 cm. Diện tích của tam giác MNE bằng:
Câu 8. Cho hình vuông ABCD, M là trung điểm của BC. Khi đó ta có bằng:
II.PHẦN TỰ LUẬN (8,0 điểm)
Câu 1 (1,5 điểm)
a. Rút gọn biểu thức
b. Cho hàm số y = -3x - m + 1, với m là tham số. Xác định giá trị của m để đồ thị hàm số y = -3x - m + 1 đi qua gốc tọa độ O
Câu 2 (1,75 điểm)
a. Giải phương trình x2 - x - 6 = 0
b. Cho phương trình mx2 - 2(m-1)x + m = 0 (1), với m là tham số. Xác định giá trị của m để phương trình (1) có hai nghiệm phân biệt.
Câu 3 (0,75 điểm) Giải hệ phương trình
Câu 4 (3,25 điểm) Cho đường tròn (O) đường kính BC. Trên đường tròn (O) lấy điểm A sao cho AB < AC. Trên OC lấy điểm M sao cho M nằm giữa O và C. Qua M kẻ đường thẳng vuông góc với OC cắt tia đối của tia AB tại N, cắt AC tại F. Đường thẳng NM cắt đường tròn (O) tại F và K (F nằm giữa E và N)
a. Chứng minh bốn điểm A, B, M, E cùng thuộc một đường tròn và chứng minh bốn điểm N, A, M, C cùng thuộc một đường tròn.
b. Vẽ tiếp tuyến tại A của đường tròn (O) cắt MN tại H. Chứng minh tam giác là tam giác cân.
c. Gọi giao điểm thứ hai của NC với đường tròn (O) là D. Chứng minh HD là
tiếp tuyến của đường tròn (O).
Câu 5 (0,75) Giải phương trình
Phòng Giáo dục và Đào tạo .....
Đề thi Giữa học kì 2
Môn: Toán 9
Thời gian làm bài: 90 phút
(Đề 3)
Bài 1 (2 điểm) Giải các hệ phương trình sau:
a. b.
Bài 2 (2 điểm) Gải bài toán bằng cách lập phương trình hoặc hệ phương trình’
Hai tổ sản xuất trong tháng thứ nhất làm được 1000 sản phẩm. Sang tháng thứ hai, do cải tiến kĩ thuật nên tổ một vượt mức 20%, tổ hai vượt mức 15% so với tháng thứ nhất. Vì vậy, cả hai tổ sản xuất được 1170 sản phẩm. Hỏi tháng thứ nhất, mỗi tổ sản xuất được bao nhiêu sản phẩm?
Bài 3 (2 điểm)
Cho đường thẳng (d) có phương trình y = ax + b. Tìm a, b biết (d) song song với đường thẳng (d’) có phương trình: y = -3x + 5 và đi qua điểm A thuộc Parabol (P) có phương trình y = x2 có hoành độ bằng – 2.
Bài 4 (3,5 điểm) Cho đường tròn (O; R), kẻ đường kính AB. Điểm M bất kì trên (O) sao cho . Từ M kẻ tại H. Vẽ đường tròn (I) đường kính MH cắt MA, MB lần lượt tại E và F.
a. Chứng minh: và ba điểm E, I, F thẳng hàng.
b. Kẻ đường kính MD của đường tròn (O), MD cắt đường tròn (I) tại điểm thứ hai là N . Chứng minh tứ giác BONF nội tiếp.
c. MD cắt EF tại K. Chứng minh
d. Đường tròn (I) cắt đường tròn (O) tại điểm thứ hai là P . Chứng minh ba đường thẳng MP, FE và BA đồng quy.
Bài 5 (0,5 điểm) Cho các số không âm x, y, z thỏa mãn x + y + z = 1. Tìm giá trị lớn nhất của biểu thức
Phòng Giáo dục và Đào tạo .....
Đề thi Giữa học kì 2
Môn: Toán 9
Thời gian làm bài: 90 phút
(Đề 4)
Bài 1 (2,0 điểm)
Cho hai biểu thức và với
a. Tính giá trị của biểu thức A khi x = 16
b. Rút gọn biểu thức P
c. Tìm giá trị lớn nhất của biểu thức
Bài 2 (2,0 điểm) Giải bài toán bằng cách lập phương trình hoặc hệ phương trình
Hai xí nghiệp cùng may một loại áo. Nếu xí nghiệp thứ nhất may trong 5 ngày và xí nghiệp thứ hai may trong 3 ngày thì cả hai xí nghiệp may được 2620 chiếc áo. Biết rằng trong một ngày xí nghiệp thứ hai may được nhiều hơn xí nghiệp thứ nhất 20 chiếc áo. Hỏi mỗi xí nghiệp một ngày may được bao nhiêu chiếc áo?
Bài 3 (2,0 điểm)
1. Giải hệ phương trình sau:
2. Cho hàm số y = x2 có đồ thị là Parabol (P) và hàm số y = x + 2 có đồ thị là đường thẳng (d)
a. Hãy xác định tọa độ các giao điểm A, B của hai đồ thị hàm số trên
b. Tính diện tích của tam giác OAB (O là gốc tọa độ)
Bài 4 (3,5 điểm)
Cho tam giác ABC nhọn nội tiếp đường tròn (O; R) với cạnh AB cố định khác đường kính. Các đường cao AE, BF của tam giác ABC cắt nhau tại H và cắt đường tròn lần lượt tại I, K, CH cắt AB tại D
- Chứng minh tứ giác CEHF nội tiếp được trong một đường tròn.
- Chứng minh
- Chứng minh EF // IK
- Chứng minh rằng khi C chuyển động trên cung lớn AB thì đường tròn ngoại tiếp tam giác DEF luôn đi qua một điểm cố định
Bài 5 (0,5 điểm)
Giải phương trình
................................
................................
................................
Trên đây tóm tắt một số nội dung miễn phí trong bộ Đề thi Toán 9 năm 2024 mới nhất, để mua tài liệu trả phí đầy đủ, Thầy/Cô vui lòng xem thử:
Xem thêm bộ đề thi Toán 9 năm học 2024 - 2025 chọn lọc khác:
- Giáo án lớp 9 (các môn học)
- Giáo án điện tử lớp 9 (các môn học)
- Giáo án Toán 9
- Giáo án Ngữ văn 9
- Giáo án Tiếng Anh 9
- Giáo án Khoa học tự nhiên 9
- Giáo án Vật Lí 9
- Giáo án Hóa học 9
- Giáo án Sinh học 9
- Giáo án Địa Lí 9
- Giáo án Lịch Sử 9
- Giáo án GDCD 9
- Giáo án Tin học 9
- Giáo án Công nghệ 9
- Đề thi lớp 9 (các môn học)
- Đề thi Ngữ Văn 9 (có đáp án)
- Đề thi Toán 9 (có đáp án)
- Đề thi Tiếng Anh 9 mới (có đáp án)
- Đề thi Tiếng Anh 9 (có đáp án)
- Đề thi Khoa học tự nhiên 9 (có đáp án)
- Đề thi Lịch Sử và Địa Lí 9 (có đáp án)
- Đề thi GDCD 9 (có đáp án)
- Đề thi Tin học 9 (có đáp án)
- Đề thi Công nghệ 9 (có đáp án)